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Abstract

In modern processor design, lowering the energy consumption is of paramount
importance. In PCs as well as in data centers, the CPU is the component
consuming the most energy. Intel, from the Skylake processor generation and
on, developed a hardware micro-controller, which is responsible for keeping the
operating frequency at its optimal value, maximizing the performance per Watt.
The logic behind such a microcontroller, however, is not disclosed. Hence the
operating system and the HW controller may set contradictory operating points,
leading then to performance degradation. In this work, we investigate non-
documented features of the frequency scaling policy of Intel’s Skylake processors,
known as Intel Speed Shift or Hardware-Controlled Performance State (HWP).
In our experiments, we investigated the response of the frequency controller
in response to known workload patterns. A few characteristics were detected,
analyzed and explained. Others are left as future work.

Chapter 1 outlines the main characteristics of the Linux Kernel, focusing on
processes. Chapter 2 contains an overview of tracing, ftrace and other elements
to make the tracing. Chapter 3 presents the technology of interest, HWP, and
its components. Chapter 4 introduces the SystemTap tool, its syntax and usage.
Chapter 5 explains the experiments conducted in this research and the various
tools that made it possible.
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Chapter 1

Basics of Linux kernel

1.1 Operating Systems

The operating system (OS) comprises the software intended to manage the
hardware resources and the application software, which performs specific, high-
level tasks. The application software, which is the larger part of the OS, is made
of utility programs and any other software with which the user interacts directly.
These programs are not part of the core OS. Rather, they are necessary to do
anything useful. The operating system acts as an intermediary between the user
and the machine by abstracting away the hardware, which makes interaction
easier: this is why almost every computer runs an operating system.

It can be argued that the OS is not strictly necessary because it is possible
to execute a program without loading an OS: this is referred as bare metal pro-
gramming and it is common in small size embedded systems. Because there is
no operating system (which means no file system, memory management or any
useful application such as compilers), programs cannot be written on the system
itself. Instead, the program is written on another machine with an operating
system, then compiled with a cross-compiler, which compiles for a target archi-
tecture different from the one it is running on. Finally, the compiled binaries
are loaded at boot time on the target embedded system. This is the opposite
of what we are used to doing on our laptops/desktops: to be able to reprogram
the machine as it is running, by writing and compiling our program with ap-
plication software designed to edit text and compile code. Thus, an operating
system greatly simplifies interaction with the machine by offering a platform for
the user and, at a higher level, by making general-purpose computing possible.

Windows, MacOS, iOS, Android. . . Most of us are familiar with these op-
erating systems. Besides the platform on which they run, they are all general-
purpose and their goal is the same. What really changes among them is the
architecture and philosophy in their design. At a macroscopic level they differ in
kernel design approach (monolithic kernel vs. hybrid kernel). This is explained
later in Section 1.3. At a microscopic level, there is literally not much to see

1



CHAPTER 1. BASICS OF LINUX KERNEL 2

because the code of most OSes is closed, so it is impossible to see the implemen-
tation differences with Linux. This leads us to one of the peculiarities of Linux:
it is completely open source and community developed. Besides ethical matters,
which are not discussed here, this means that it is possible to study the code
and get a full understanding of operating systems. In fact, before Linux, there
was no way to see how operating systems work in practice. The only option was
to study them from textbooks in order to implement your own kernel, which is
exactly what Linus Torvalds did.

As stated earlier, a key component of an OS is “the software intended to
manage the hardware resources”: this is what we refer as the kernel. Dennis
Ritchie, among the inventors of Unix and C, also called it the “Operating sys-
tem proper”[38], which most likely means “The component that is the actual
operating system”. On the one hand this definition makes sense, because the
low level tasks performed by the kernel are essential (and also because it is the
most difficult component to develop). But on the other, without application
software the kernel is useless. In such scenario, the kernel is loaded at boot,
then it initializes and starts running, and then there is nothing but a black
screen because there is no other program to start. it is clear that the kernel
is not an operating system by itself, but what Dennis meant is that when we
think about the core architecture of an OS, we think about the kernel. An
engine is indeed useless without the rest of the car, but does that make the
other components as important as the engine, where all the complexity resides?
Despite the application software being the largest part of the OS; it is within
the kernel that the hardest engineering challenges are found, which makes it the
most interesting—and difficult—part to understand and analyze.

1.2 A general overview

The kernel’s job is to manage hardware resources, which means handling all
interactions with the CPUs, the memory hierarchy and the I/O devices. More
specifically, the kernel needs to respond to I/O requests, manage memory allo-
cation and decide how the CPU time is shared among the demanding processes.
To achieve this, it has access to all resources in the system, which is needed
to make the most out of the hardware. Its performance is what makes the dif-
ference between a fast or a slow operating system. This critical role requires a
protection mechanism to ensure the stability and the security of the whole sys-
tem. This is achieved by separating kernel code and user application code. In
practice, depending on the configuration settings at compile time, what happens
is:

1. The kernel binary image is loaded in RAM in a memory area which can
start from a low or high address.

2. A pre-defined slice of RAM next to that memory area is reserved to the
kernel.

3. The remaining part of the memory is accessible to the user.
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These two portions of the address space are called kernel space and user space.
The former is a reserved area dedicated to critical system tasks and it is pro-
tected from user access, the latter is the area where system utilities and user
programs run. This memory partitioning makes sure that kernel and user data
do not interfere with each other. Also, it is a security measure to prevent that
a malfunctioning or malicious user program may affect the entire system.

1.2.1 System calls

By extension of this design, the interaction with the user space is regulated
with a privilege system. Each process can run either in user mode or kernel
mode. Processes running in user mode can access privileged kernel functionali-
ties through special gates in a pre-defined and controlled manner. These gates
are implemented as functions called system calls, which serve as APIs between
user and kernel space. When a user process performs a system call

1. it temporarily executes in kernel mode,

2. it performs tasks that require a high privilege, and finally

3. it switches back to low privilege.

This mechanism exploits the availability of hardware functionalities. For ex-
ample, in the x86 architecture 2 bits in the code selector (cs) register indicate
the current privilege level (CPL) of the program that is running on the CPU.
This value is 0 or 3, respectively, for kernel and user mode and each system call
changes this value temporarily.

Figure 1.1: Kernel space (in red) and user space (in green and blue)
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Very often, useful operations in the system require privileged services pro-
vided by the kernel. For example, even an extremely simple shell command such
as echo performs dozens of system calls, which are reported below as listed by
the command strace -wc echo

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

29.57 0.000514 514 1 execve

17.03 0.000296 33 9 mmap

11.62 0.000202 67 3 brk

8.52 0.000148 37 4 mprotect

7.19 0.000125 25 5 close

6.10 0.000106 35 3 open

5.93 0.000103 26 4 fstat

5.58 0.000097 32 3 3 access

2.82 0.000049 49 1 munmap

2.24 0.000039 39 1 write

1.84 0.000032 32 1 read

1.55 0.000027 27 1 arch_prctl

------ ----------- ----------- --------- --------- ----------------

100.00 0.001738 36 3 total

System calls can be called in user space applications directly, through assembly,
or indirectly, by calling wrapper functions from the C standard library (glibc),
as shown in Figure 1.1.

1 // Two different ways of calling open/close through glibc wrapper functions

2 // SYS_open and SYS_close correspond to the syscall numbers

3 int fd = syscall(SYS_open, "example.txt", O_WRONLY);

4 syscall(SYS_close, fd);

5 fd = open("example.txt", O_WRONLY);

6 close(fd);

Calling through assembly means filling the right CPU register with the syscall
arguments and then using a special assembly instruction. On x86 machines it is
required to fill the EAX register with the system call number (by a mov assembly
instruction) and then invoke the interrupt 128 (by the instruction int 0x80).
Modern processors may use a different one. This is what will happen upon its
execution:

1. Interrupt number 128 (=0x80) is released. In Linux, it corresponds to a
system call interrupt.

2. The process execution is suspended and the control passes to the kernel
(kernel mode), which will look up the entry 128 in the interrupt vector
table. This table simply associates interrupt numbers with their handler:
a function that gets executed when the interrupt happens.
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3. The corresponding handler is executed: this function copies the syscall
number and arguments from the registers onto the kernel stack. It will
then look up in the system call dispatch table the handler corresponding to
the syscall number and call it with the correct arguments like any normal
C function, because the arguments are now located on the kernel stack.

4. The system call is finally executed and the return value is stored in a
general-purpose data register.

Registers are used to pass the parameters because this way it is easier to get
them from user to kernel space. It is intuitive that such a procedure to invoke
system calls is architecture dependent. For this reason, glibc wrappers are
always used: they internally execute the assembly code that we just illustrated
and do it differently for each architecture. Calling wrappers is also very safe
since it avoids to accidentally fill the wrong registers or miss the right number
of arguments. it is important to note that the kernel can protect itself against
invalid syscall arguments in registers. This is crucial since, as we saw, syscalls
are easily called from user space directly by executing the proper assembly
instructions.

1.2.2 A different kind of software

The separation between kernel/user space and the fact that we are working at
such low level makes the kernel a very peculiar piece of software. One of its
properties is that there is no error checking, this is because the kernel trusts
itself: all kernel functions are assumed to be error-free, so the kernel does not
need to insert any protection against programming errors[23]. Instead, what the
kernel does is to use assertions to check hardware and software consistency; if
they fail then the system goes into kernel panic and halts. The choice of checking
assertion (and possibly going to kernel panic if something went wrong) is that
since the kernel controls the system itself, error recovery and error correction
is very hard and would take a huge part of the code. Another way of thinking
about it, is that there is no meta-kernel that handles kernel errors. Of course
programming or hardware errors can (and will) still occur: when this happens
the offending process is killed and a memory dump called “oops” is created. A
typical example of this is when the kernel dereferences a NULL pointer: in user
space this would cause a segmentation fault, while in the kernel it will generate
an oops or in the worst case go directly into panic. After this kind of event, the
kernel can no longer be trusted and the best thing to do would be to reboot,
because the kernel is in a semi-usable state and it could potentially corrupt
memory. Furthermore, a panic in this state is more likely to happen. Possibly,
the user experiencing the kernel panic may also inform the kernel maintainers.

Another peculiarity of the kernel is that it uses its own implementation of
the functions in the standard C library. For example printf() and malloc()

are implemented as printk() and kmalloc(). There are different reasons for
this choice, one of those is that the C standard library is too big and inefficient
for the kernel. Another reason is that implementing your own functions gives
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more freedom because they can be customized for their purpose in the kernel.
Memory allocation in user or kernel space is very different, so the kmalloc()

implementation is very specific. For instance, kernel data structures need a
contiguous physical memory segment to be allocated, while regular user space
allocation does not have this restriction. Furthermore, printk() writes its
output into the kernel log buffer (that you can read by using the dmesg command
in user space); this is very different from printf() that writes on standard
output.

1.2.3 User and kernel stacks

As stated earlier, the memory management is different in kernel/user space.
The same applies to the execution. Every process in the system has two stacks,
located respectively in user and kernel space, and it will use one of the two while
executing in the corresponding privilege mode. x86 CPUs automatically switch
stack pointers when privilege mode switches occur, which usually happens for
syscalls. The user space stack can potentially be very big, with a very high limit
(8MB on my machine, but it can be increased), and even though it is initially
small it can allocate more physical memory as it needs it: this mechanism is
called “on-demand paging”. The kernel stack, unlike the user stack, cannot
expand itself and it has a fixed size of two pages. Since, 32-bit and 64-bit
systems have 4KB and 8KB sized pages, then the kernel stack size is of size
8KB or 16KB, respectively. These two pages must be allocated contiguously,
which can cause memory fragmentation for long system uptimes as stacks get
deallocated. In other words, it becomes increasingly hard to find two physically
contiguous available pages as the OS runs for a long time. For this reason, in
the past efforts were made to reduce the stack size to one page, which would
eliminate fragmentation, but after many stack overflows the standard settled on
two pages.

This leads us to an interesting example of the kernel trusting itself: it
makes the strong assumption that the stack will never overflow: no protec-
tion against it is in place. So what happens if it overflows? First, it will
corrupt the thread_info data structure, which is the first data that the stack
encounters along its path (Figure 1.2). This will make the process nonexistent
for the kernel and cause a memory leak. Next, the stack can overflow outside
of the address space and silently corrupt whatever kernel data is stored; the
best case scenario here would be a kernel panic to prevent any further mem-
ory corruption. Another natural question might be “why are kernel stacks so
small?” and the answer is simple: first, to use a small amount of kernel memory,
and secondly, because of fragmentation. The bigger is your data structure in
contiguous physical memory, the more it is hard to allocate. It is expected that
any process stays in kernel mode for a small amount of time, so it should use a
very small portion of the stack. A consequence of small stacks is that very few
recursive functions are used to avoid long call chains and minimize stack usage;
the same is true for big static allocations on the stack.

It is important to note that there are special processes called kernel threads
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Figure 1.2: The kernel stack inside its small address space of two pages, it grows
downward towards low memory.

that do not follow this pattern of kernel/user stack. Kernel threads perform a
specific system task, they are created by the kernel and they live exclusively in
kernel space, never switching to user mode. Their address space is the whole
kernel space and they can use it however they want. Besides this, they are
normal and fully schedulable tasks just like the others. An example of a ker-
nel thread is ksoftirqd: there is always one for each CPU and their job is to
dispatch interrupt requests. As a side note, the name stands for “Kernel Soft-
ware Interrupt ReQuest Daemon”, many kernel threads follow a similar naming
convention.

1.2.4 A monolithic design

There are fundamentally different design approaches in kernel development. We
can see these as a spectrum, where on one end there is the monolithic kernel,
and on the other one the microkernel (or µkernel). The choice depends on
how many services are located in kernel space: while in monolithic design every
service is in the kernel itself, microkernels strive to reduce as much as possible
the code running in kernel space. This is done by moving most services in user
space, while keeping only essential primitives in the kernel (Figure 1.3).

These services are implemented as servers, and communication between the
servers, applications, and the kernel is based on message passing. As in classic
client/server approach, applications send requests to the servers, which can in
turn request services to the kernel or satisfy the request directly. Because of
this design choice, the system relies heavily on Inter-Process Communication
(IPC), which can be achieved in different ways: in this case, there are actual
messages being passed between processes. Even if they are part of the core
architecture, the servers are user processes and run in user space just like the
other user processes, though they get higher privileges.
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Figure 1.3: The most popular kernel designs and their differences

By reducing the code running in kernel space, there is less risk for bugs.
Because the trusted codebase is very small, there is no need to make big as-
sumptions like in monolithic kernels. As stated before, a bug in the kernel can
bring down the entire system, but in microkernels bugs are contained. For exam-
ple, if the networking service crashes, then we can just restart it since it is just a
user process; in a monolithic environment, this problem would have crashed the
entire system: this is one of the biggest flaws of the monolithic design. A small
trusted codebase also means more portability because all the architecture de-
pendent code is concentrated in the small kernel. The actual operating system
is built on top of it, so it would be possible to implement it in a more high level
language, while only the primitives in the kernel must be ported. Conversely, in
a monolithic kernel, many functions must be rewritten for each architecture: in
Linux, the folder for architecture dependent code (arch) is the second biggest
folder and it represents 8% of the code.

Another direct consequence of shifting the code in user space is that micro-
kernels are more easily maintainable. Development is easier because most of the
code runs in user space, so the usual restrictions for kernel code are not present:
for example, it would be possible to make use of glibc. Furthermore, testing
can be done without rebooting the system: just stop the service, recompile the
code and then start it again. On a monolithic system, not only it is needed
to recompile the whole kernel, we must also reboot in order to load the image
again. And if this new image does not work, then we must reboot again with
the working image. In practice, this is always done in a virtual machine in order
to test more efficiently, but it is still a tedious process.

Given all these advantages, why are not microkernels always used? It is
mostly because of one deadly flaw: the performance penalty. It is easy to see this
if we think that monolithic kernels communicate directly with hardware, while
in microkernels most of the operating system does not; essentially, microkernels
add an additional layer of abstraction through heavy use of IPC. More precisely,
the task of moving in and out of the kernel to move data between applications
and servers creates significant overhead. This process results in two major
problems:

• A large number of system calls, caused by services frequently needing to
use the primitives.
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• Many context switches, because each service must be scheduled as a pro-
cess. In order to pass a message between two services, a full context switch
is needed to send and receive.

This last problem is not an issue in a monolithic setting, because kernel functions
are executed when any currently running process enters kernel space. Of course,
calling a plain function is much less costly than doing a system call or context
switch. Furthermore, IPC in monolithic kernels is implemented through shared
memory, which is more efficient than IPC with message passing. In Linux, be-
cause every functionality is in the kernel, it is a single, big program running
in his dedicated address space: this means that every subsystem (scheduling,
IPC, networking, memory management. . . ) shares the same memory. Para-
doxically, all the auxiliary code needed for interfacing and communication can
make microkernel-based operating systems larger than monolithic kernels, even
though all this code is not in kernel space.

Linux is a monolithic kernel, and because of this design choice, even the
device drivers are located in kernel space: in fact, more than 65% of the kernel
code is just drivers (in the driver directory, the largest folder). This means
that while the system is running a huge part of the code is not being used. For
this reason, many miniaturized versions of Linux have been distributed: a fully
functional—and still monolithic—kernel can fit on a single floppy disk. If we
wanted to create just a reduced version, it would not be too hard to remove
drivers that are not needed and then recompile the kernel.

A problem of the monolithic design is the natural lack of modularity; micro-
kernels do not have this problem because it is very easy to start/stop drivers
running in user space. Monolithic kernels try to achieve the modularity of
microkernels by using kernel modules: they are simply code that can be insert-
ed/removed from the kernel at runtime. A module can be linked to the running
kernel when its functionality is required and unlinked when it is no longer use-
ful: this is quite useful for small embedded systems, to keep running code to
a minimum. Modules are often used to add/remove drivers and this approach
is much faster than having drivers in user space: since the code runs in kernel
space, there is no need to do message passing or communicate with user space
at all. it is just like in a microkernel and without performance penalty, but then
again, now we are programming in kernel space, which is harder. In the end,
it is a choice between ease of development/fault tolerance or performance. Fur-
thermore, modules, unlike the external layers of microkernel operating systems,
do not run as a specific process. Instead, they are executed in kernel mode on
behalf of the current process, like any other kernel function: this means less
switching between processes, so again, better performance. Because of the big
flaw of monolithic kernels mentioned earlier, if a driver module does not behave
correctly, the system can crash upon module insertion.

Modules are powerful, but cannot always accomplish what a microkernel
can. As an example: on Linux, it is not possible to replace the scheduler at
runtime. In order to do that, it is needed to have the two different schedulers
directly in the core code and switch between them at runtime (This is how it
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Figure 1.4: A portion of the kernel subsystems map

is actually done in Linux: there are different schedulers already implemented).
Modules usually are not used to implement core functions, but are rather seen
as extensions of the kernel. This means that it is very difficult to modify policies
decided by the kernel through modules, and users must adapt to these policies
or modify the code and recompile the whole kernel. Conversely, in microkernels
it is easy to change core implementation, since it runs as a service.

Finally, the hybrid design is halfway between monolithic and microkernel, as
it tries to take the best side of both approaches: having good performance, but
also, to some extent, flexibility and maintainability. In practice, its philosophy
is very similar to a monolithic kernel and hybrid kernels have been dismissed by
Linus Torvalds as “just marketing”[39]. Notable OSes that use a hybrid kernel
are Windows and MacOS.

1.3 Process management

The kernel is divided into subsystems that interact with each other. Figure 1.4 is
a zoom into the kernel mechanisms inside the red part of Figure 1.1. The image
represents the part of the kernel that will be covered, for the most part we will
swing between the scheduling and memory mapping subsystems. The names in
the picture are structs, functions or source code files; we will get familiar with
most of these as we go on.
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1.3.1 Processes and threads

A process is an instance of a running program. Each process has resources
associated with it, such as an address space, open files, global variables and
code. Each process must have its own address space that only he can access:
when a process tries to access a memory location that does not belong to it, a
segmentation fault interrupt is generated. A thread is defined as a single flow
of execution, it has associated a stack of execution and the set of CPU registers
that it uses, most notably the stack pointer and program counter. Each process
can have multiple threads, in which case it is a multi-threaded process; threads
belonging to a process will share resources between each other. The execution
aspect of a process is always represented by threads, which means that a process
cannot exist without at least one thread associated.

The kernel does not distinguish between processes and threads, so they are
treated as the same entity. Because of this, a problem in terminology arises.
Next, it is shown how processes and threads are distinguished.

Each process has its own PID (Process IDentifier) and groups of processes
are identified by the TGID (Thread Group ID). If a process only has a single
thread then its PID is equal to its TGID. If a process is multi-threaded then each
thread has a different PID, but they will all have the same TGID. Furthermore,
there will be a thread in this group called thread group leader that will have its
PID equal to the TGID, so the TGID field in each thread is just the PID of
their leader. Just to add some more confusion, when you call getpid() you are
actually getting the TGID (the group leader PID, identifying the whole process),
and when you call gettid() you are getting the PID (which identifies a single
thread, not a group). Hence, the PID resembles more a thread identifier. This
confusing way of using IDs was implemented to comply with POSIX standards,
which require that each thread of a multi-threaded process must have the same
id: this is why getpid() returns the TGID.

The real difference between threads and processes is that threads share the
same address space, while processes do not. By saying that some threads are
associated to a same process just means that they are sharing an address space.
This enables concurrent programming, enables communication among threads
via shared memory, and requires then synchronization methods. As shown in
Section 1.3.3, using threads in a program instead of spawning new processes
results in much better performance, which is why threads are sometimes called
lightweight processes or LWP.

1 //stack size for cloned child

2 const int STACK_SIZE = 65536;

3 //start and end of stack buffer area

4 char *stack, *stackTop;

5 // ... define child startup function "do_something" ...

6 stack = malloc(STACK_SIZE);

7 stackTop = stack + STACK_SIZE; //stack grows downward

8

9 //spawns a new thread

10 clone(&do_something, stack + STACK_SIZE, CLONE_VM | CLONE_FS | CLONE_FILES |

CLONE_SIGHAND, 0);↪→
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11 //spawns a new process, this is the same as using fork()

12 clone(&do_something, stack + STACK_SIZE, SIGCHLD, 0);

The system call clone() spawns a new child process. it is very similar to fork()

but it is more versatile because flags can be used to decide how many resources
are shared with the new process. CLONE_VM (where vm stands for virtual mem-
ory) makes the child process run in the same address space as the father, while
the other flags clone filesystem information (such as working directory), open
files and signal handlers. The flag SIGCHLD at line 12 requires that the parent
process receives a SIGCHLD signal upon the termination of the created child pro-
cess. Ultimately, the reason why threads and processes are treated as the same
entity in Linux, is that processes are just threads that share nothing. In fact,
the word task is always used inside the kernel instead of process/thread and we
will do the same, especially when discussing implementation.

Each task is represented in the kernel with the struct task_struct, this is a
fairly big structure that can be almost 2KB in size, depending on configuration
at compile time. task_struct is what is often referred as the process descriptor
or PCB (process control block): every information about a task is stored in here.

1 // Code from ./include/linux/sched.h

2 struct task_struct {

3 /* -1 unrunnable, 0 runnable, >0 stopped: */

4 volatile long state;

5 void *stack;

6 /* Current CPU: */

7 unsigned int cpu;

8 // A boolean, "on_runqueue"

9 int on_rq;

10 int prio;

11 int static_prio;

12 int normal_prio;

13 int exit_state;

14 int exit_code;

15 int exit_signal;

16 /* The signal sent when the parent dies: */

17 int pdeath_signal;

18 pid_t pid;

19 pid_t tgid;

20 /* Real parent process: */

21 // The original parent that forked this task

22 struct task_struct __rcu *real_parent;

23 /* Recipient of SIGCHLD, wait4() reports: */

24 // The current parent, maybe the original one exited

25 struct task_struct __rcu *parent;

26 // Executable name, usually the command that spawned this task

27 char comm[TASK_COMM_LEN];

28 /* Filesystem information: */

29 struct fs_struct *fs;

30 /* Open file information: */

31 struct files_struct *files;

32 /*

33 * Children/sibling form the list of natural children:

34 */
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35 struct list_head children;

36 struct list_head sibling;

37 struct task_struct *group_leader;

38 /* PID/PID hash table linkage. */

39 struct pid *thread_pid;

40 struct hlist_node pid_links[PIDTYPE_MAX];

41 struct list_head thread_group;

42 struct list_head thread_node;

43 };

These are some of the most basic fields the struct, most of them are self-
explanatory.

The volatile keyword asks the compiler not to optimize by caching the
storage of this variable. This indicates that the value may change even if the
variable does not appear to have been modified. Hence, every time a volatile

variable is accessed, it needs to be read from the main memory. The opposite of
volatile is the compiler hint register. The fact that the task state is volatile
makes sense because it could be unpredictably modified by interrupts: it could
be possible that an old value of the variable is read from the cache instead of
the actual value.

Let us now focus on the pid fields to show how Linux uses pids to find any
information and resources of a task. Given a pid, searching linearly through
the pids to find the task we are looking for would be very inefficient. Instead, a
hash table known as pid hash table is used for this purpose. The identifiers in
this table are simply the result of hashing a given pid, you can see in figure 1.5
that conflicting entries are simply stored in a list associated with the same id.
Because it is a hash table, the kernel can quickly look up the pid and find in
O(1) time the corresponding process descriptor. This procedure is, for example,
applied when the command kill [PID] is launched.

1 // Code from ./include/linux/pid.h

2 enum pid_type {

3 PIDTYPE_PID, //process PID

4 PIDTYPE_TGID, //thread group leader PID

5 PIDTYPE_PGID, //process group leader PID

6 PIDTYPE_SID, //session leader process PID

7 PIDTYPE_MAX

8 };

There are actually four tables, one for each PID type. Each of these tables is
an array of hlist_head, the head of the chain list, which points to a list of
hlist_node (see Figure 1.6). These structures are used for non-circular lists.
These lists are populated by struct pid, and a pointer to this struct is stored
inside each process descriptor in the thread_pid field. Figure 1.6 shows an
example for the TGID class that we discussed earlier. PIDs in the chain list are
colliding and are different processes, PIDs in the pid_list are threads in the
same group, where the leftmost thread in the image is the group leader. Despite
the name “list_head” inside the pid structure, such a field points to a circular
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Figure 1.5: Pid hash table, pids 199 and 29384 are both hashed to 199

list, and since it is circular there is really no head structure that points to the
first element.

1 // Code from ./include/linux/pid.h

2 struct pid {

3 atomic_t count; // number of references to this PID

4 int nr; // PID number

5 struct hlist_node pid_chain; // Link to next and previous conflicting

entries↪→

6 struct list_head pid_list; // per-PID list

7 };

The implementation of struct pid is slightly different from what was pre-
sented, with other nested structures and a different linkage to the hash table.
In this section, only a small portion of the process descriptor is described.

1.3.2 List implementation

In a classic circular list, the struct of the node contains the data and pointers
to the next and previous nodes. This implementation is naive and would lead
to have a different structure for each data type, or using a void pointer to our
data for no reason. Let’s see how lists are used in the kernel.

1 struct list_head {

2 struct list_head *next, *prev;

3 };
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Figure 1.6: Hash table for the TGID pid type

The data is not contained in the list itself, but in another structure that
contains the list node (Figure 1.7). For example, Linux keeps a big circular list
of every task_struct in the system: this is done by embedding
struct list_head tasks; into task_struct. Notice how this is not a pointer
to a node: the node is embedded directly into the structure. So how can we get
the data we want in the structure without a pointer in the node? The answer is
the container_of() macro. This macro works with anything, but let’s assume
that we have a list embedded in the container structure.

1 // ./include/linux/kernel.h

2 #define container_of(ptr, type, member) ({ \

3 void *__mptr = (void *)(ptr); \

4 ((type *)(__mptr - offsetof(type, member))); })

5 // An alias that is used everywhere



CHAPTER 1. BASICS OF LINUX KERNEL 16

Figure 1.7: A generic doubly linked circular list

6 #define list_entry(ptr, type, member) \

7 container_of(ptr, type, member)

ptr is the pointer to the list node, type is the container struct, member is
the field name of the list node in the container struct. We first cast ptr to a void
pointer, then we subtract the offset from the beginning of the container struct
of the field we want to get. When we allocate a struct, its field are allocated
contiguously in virtual memory in the order that we declared them: this means
that by moving the pointer backwards from a field by the right amount, we can
end up at the beginning of the container structure. This is how we can get the
offset of the specified field in any struct:

1 // ./include/linux/stddef.h

2 #define offsetof(TYPE, MEMBER) ((size_t)&((TYPE *)0)->MEMBER)

TYPE is the struct we are considering, MEMBER is the name of the field, what
it does is:

1. Take the address 0, the first in the address space of the process

2. Cast it to a TYPE pointer

3. Dereference the pointer and take the MEMBER field

4. Take the address of the field and cast it to a size, now it is no longer an
address

Essentially, we are pretending that there is the container structure allocated just
at the beginning of the address space. This is arguably a bit of a hack, but it is
perfectly safe since we are just playing with pointers and never touching actual
memory. Indeed, it would be very dangerous to dereference and modify data
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from a random pointer in memory. This approach has many advantages, such as
being able to have multiple lists associated with the same data. task_struct,
for instance, contains also the children and sibling lists among many others.
This implementation is also very easy to use and it is oblivious about types.

1.3.3 Scheduling

A system with a single CPU can execute only one process at a time. For this rea-
son, a scheduler for processes is needed. Process scheduling consists in choosing
which processes should run in what order, essentially deciding how CPU time
is shared among processes. To achieve this, there are many scheduling algo-
rithms such as FCFS (first come first served), RR (round-robin), EDF (earliest
deadline first) and SJF (shortest job first). Most of the scheduling policies are
preemptive, which means that at any time the scheduler can arbitrarily decide
to interrupt the currently running task and assign the CPU to another process.
The use of preemption implies that processes have assigned timeslices: they are
periods of time in which the process is allowed to run and after which it will be
preempted.

FCFS, which is the most basic scheduling algorithm, does not have preemp-
tion nor timeslices: every process runs as much as it wants before voluntarily
giving up the CPU to the next task in the queue. Round-robin is similar to
FCFS because it has a FIFO runqueue; the difference is that it uses a constant
timeslice, called quantum, assigned to each process: when the quantum expires
the process gets preempted and the next task is scheduled.

In a UP (uniprocessor) system it is not possible to achieve true parallelism
among processes. The only way to do it is to have multiple processors that
share a common bus and the central memory: this is known as SMP (symmetric
multiprocessing). A single processor can also have multiple cores, but each one
is treated as a separate processor, so the SMP architecture applies to cores
as well. Even on SMP systems, which represent most systems today, there
often are more processes than cores. Hence, scheduling is necessary for each
processor/core. There are also new problems that arise in SMP, such as load
balancing : the problem of balancing processes between CPUs so that no CPU
goes idle or has an unfair amount of workload. This kind of related problems
must also be taken into account by the scheduler.

Every job carried out by the scheduler will eventually lead to a process
switch on a given CPU. The kernel has a mechanism to suspend the execution
of a process, save its status, and resume another process. This procedure is
called context switch. Each process has an execution context, which includes
everything needed for a task to execute, from its stack to the code. While every
process can have its own process descriptor, the registers on the CPU must
be shared between every process in the system. Every value in any register
that a process is using is a subset of the execution context and it is called the
hardware context. At every context switch the hardware context must be saved
and restored, respectively, for the old and the new process. The content of the
registers are saved in part in the process descriptor of the preempted process,
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and in part on its kernel stack.
The routine that performs a context switch is called—not surprisingly—

context_switch(), and it is called only in one well-defined point in the kernel:
inside the schedule() routine, which triggers the scheduler and chooses the
next task to schedule. context_switch() basically switches the address spaces
of the two processes and then calls __switch_to(). This last function operates
on registers and kernel stacks, so it is one of the most architecture dependent
in the whole kernel. This is why, like many other similar routines, there is one
version for each architecture supported by Linux in the arch folder. Next, the
x86 version of the context switch is described.

There are 6 segmentation registers that hold segment selector, basically the
starting address of memory segments in the process address space.

• cs Code segment, this points to the segment containing instructions of
the loaded program, also known as the .text section. We mentioned in
Section 1.2 that this register also holds 2 bits that describe the current
privilege level of the CPU.

• ss Stack segment, points to the segment containing the stack of execution.

• ds Data segment, points to the segment containing global variables and
constants, also known as the .data section.

The other 3, es, fs and gs are general-purpose and do not hold a specific
address. There are also general-purpose data registers that hold data used in
operations (ax, bx, cx, dx) and pointer registers, that hold offsets:

• ip Instruction pointer, offset to the next instruction. If added to cs will
be the address of the next instruction to fetch (cs:ip).

• sp Stack pointer, offset to the top of stack. If added to ss will be the
address of the top of stack (ss:sp).

• bp Base pointer, offset to subroutine parameters on the stack (ss:bp).

Let’s now see which part of the process descriptor is involved in context switch-
ing.

1 struct task_struct {

2 // ...

3 /* CPU-specific state of this task: */

4 struct thread_struct thread;

5 };

1 struct thread_struct {

2 #ifdef CONFIG_X86_32

3 unsigned long sp0;

4 #endif

5 unsigned long sp;

6 #ifdef CONFIG_X86_32
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7 unsigned long sysenter_cs;

8 #else

9 unsigned short es;

10 unsigned short ds;

11 unsigned short fsindex;

12 unsigned short gsindex;

13 #endif

14 // ...

15 /* Floating point and extended processor state */

16 struct fpu fpu;

17 };

This struct is obviously very architecture dependent, its purpose is to save the
hardware context before the context switch. You can see that even if it is specific
to x86 it can still change depending on whether the architecture is 32 or 64 bits.
You can also notice that only a small part of the hardware context gets saved in
the process descriptor: the kernel stack pointer, general-purpose segmentation
registers, data segment and the floating point registers. In older versions of the
kernel most of the registers were stored here. Let’s see in detail what happens
when the kernel switches from process A to process B. There are actually two
different mechanisms in this procedure: the entry/exit mechanism (user/kernel
stack switch) and the context switch.

1. Process A enters kernel mode, so it will switch from its user stack to
its kernel stack, in other words: it saves its user hardware context in
the kernel stack. It does so by pushing its user mode stack (ss:sp),
instruction pointer (cs:ip) and data registers onto the kernel stack, then
all CPU registers are switched to use the kernel stack.

2. When in kernel context, process A invokes schedule() which will even-
tually do context_switch().

3. Process A saves its hardware context:

(a) It pushes most of its register values onto the kernel stack by a series
of mov assembly operations.

(b) It saves the value of the stack pointer (which is pointing to the kernel
stack) into its task_struct->thread.sp.

(c) Other registers such as the floating point registers are saved in the
thread field of task_struct.

4. Process A loads a previously saved stack pointer from process B’s
task_struct->thread.sp, also loads the other saved registers

5. Address spaces are switched.

6. Using the loaded stack pointer, process B moves its previously saved reg-
isters from its kernel stack into the registers. This is done by a series of
pop [register] assembly operations. Process B’s state is now completely
restored.
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7. process B exits kernel mode and restores its user context. This is accom-
plished by loading previously saved registers from the kernel stack: its
user mode stack (ss:sp), instruction pointer (cs:ip) and data registers.
Process B is now in user context.

To understand scheduling mechanisms in the next sections it is important to
highlight something in step 2, when the scheduler gets called by a process run-
ning in kernel mode. It may be intuitive to think of the scheduler as some kernel
thread that is permanently running in kernel mode, but that is not the case.
The scheduler does not run as a separate thread, it always runs in the
context of the current thread. This means that any process in the system
that goes from/to kernel mode can potentially execute the scheduler himself,
using its own kernel stack. The simplest case is when a process voluntarily gives
up the CPU by going into a sleep state, in which case it subsequently executes
schedule() in kernel mode (it would have switched already to kernel mode
when sleeping). Another thing to highlight is how the user hardware context
has nothing to do with context switch, this is because it always gets saved/re-
stored on the kernel stack when entering/leaving the kernel. An implication
of this fact is that context switches always happens in kernel mode, which is
expected since it is a core system task.

It is important to understand that a context switch generates significant
overhead and, in fact, most of the scheduling overhead comes from context
switching. It is caused by the need to switch address spaces and by the fact that
context switching is not cache friendly. This is the reason why a context switch
between threads (LWP) is almost inexpensive compared to context switching
different processes: step 5 in the procedure is skipped because threads share
an address space, so there is no need to switch it (again, this is why they are
lightweight processes).

1.3.4 Tasks lifetime

Tasks have a life cycle: a new child process task is created every time a task uses
fork-like system calls. As shown in Section 1.3.1, once a process is created some
resources are inherited from the father, depending on the clone() flags, while
fork() will duplicate the calling process. There are some resources that will
always be inherited and there is no reason to duplicate, such as the executable
object code (the .text memory segment in Linux). The new process will be in
the runnable state and ready to be scheduled. When the process needs to wait
for a particular resource, it goes into a sleep state; it will then become runnable
again when the resource is available, or after a pre-defined time when the syscall
sleep() is used. A process can also go from running to runnable: this happens
if the process is preempted or if it gives up the CPU voluntarily. This last case
happens, for instance, if the process needs to do I/O operations for which it
does not need the CPU. This way no processor time is wasted and another task
is scheduled.

A process terminates by executing exit() or when it receives a signal (in-
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cluding SIGHUP, SIGINT, SIGKILL, SIGTERM, and others) from other processes
which have the privileges to do so. Upon exit, its exit state will initially be
set to the zombie state. A zombie process is a process that terminated, but its
process descriptor and entry in the pid hash table are still present in memory
and accessible (for example, by ps -aux). Tasks’ resources are not deallocated
immediately because the parent process may want to access some of this infor-
mation, most likely the exit status, or may want to synchronize with the child
process termination via wait() or waitpid(). This is actually a relevant re-
source leak because task_struct is almost 2KB in size. Hence, if there are
many zombie processes then a big portion of memory is simply wasted until the
parent process executes a wait()/waitpid(). More in details, a task_struct

plus its kernel stack consumes around 10KB of low kernel memory, that is
THREAD_SIZE + sizeof(struct task_struct), assuming that kernel stacks
are 8KB in size (thread_info and pidhash entry are too small to be relevant).

After terminating and sending a signal to the parent, a task will remain zom-
bie until its parent performs a wait(), upon which the parent gets information
about the terminated child. Subsequently, release_task() is executed and the
last data structures from the descriptor get detached. detach_pid() is called
twice to clear the entry in both the PID and TGID hash tables, then task_struct

is finally deallocated. Zombie processes are impossible to kill externally: they
can not receive signals as they no longer exists, so a wait by the parent is the
only way to clean the memory occupied by the zombie data structure. Suppose
that the parent of a zombie process exits without waiting: the child will be
an orphan process so it will be become a child of init. Luckily, the ancestor
process (init) has a routine that waits periodically to reap possible zombie
processes; so the child process will simply be waited by init and get cleared.
This mechanism ensures that memory won’t be cluttered by zombies and leaves
the pid table in a consistent state.

States and exit states of a process are defined in include/linux/sched.h

as following.

1 /* Used in tsk->state: */

2 #define TASK_RUNNING 0x0000

3 #define TASK_INTERRUPTIBLE 0x0001

4 #define TASK_UNINTERRUPTIBLE 0x0002

5 #define __TASK_STOPPED 0x0004

6 #define __TASK_TRACED 0x0008

7 /* Used in tsk->exit_state: */

8 #define EXIT_DEAD 0x0010

9 #define EXIT_ZOMBIE 0x0020

10 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)

• TASK_RUNNING is either a process that is ready to be run (in which case it
is more like “runnable”) or that is actually running.

• TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE are both states in which
a task is sleeping, waiting for some condition to be true. The former allows
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a process to be woken up by signals, the latter does not: an uninterrupt-
ible task will ignore any signal and will only wake up on his condition.
This distinction is the reason why, as we will see later, the routine that
wakes up tasks is called try_to_wake_up().

• __TASK_TRACED means that another process is tracing this one, usually a
debugger such as ftrace.

• A task in __TASK_STOPPED is not running and cannot be scheduled: this
happens upon stop signals or any signal from a tracing process.

The values associated to these states are defined like this so that they can
be used for bitmasks, which is the standard way to handle flags. Each flag is
a power of 2 (in hexadecimal) so flags can be combined with bitwise operator
| or be tested with &. For example, checking if a task is sleeping can be easily
done like this:

1 if(tsk->state & (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE))

2 printk("task %d is waiting for something", tsk->pid);

Figure 1.8: State machine of task states



Chapter 2

Tracing events in Linux

2.1 Introduction

It is important to understand the difference between simple event logging and
tracing. The former is often used by system administrators to catch and resolve
high-level issues (e.g. failed installation of programs or intrusion detection). It
must be easy, so the logs must not be “noisy”. On the other hand, tracing is
consumed primarily by developers and logs low-level information (e.g. thrown
exception). Since it handles lower level information it is necessarily “noisy”,
this means that reading the logs is not always intuitive or simple.

In operating system based computing environments a significant amount of
a process’ behaviour is defined by its interface with the operating system. This
interface typically defines the process’ environment such as the current direc-
tory, the input/output operations including operations of files, the execution of
sub-processes and inter-process communication. Logging and interpreting the
transactions between a process and the operating system it runs on, can provide
data that can be used for a variety of purposes. Some of them are [33]:

Debugging A listing of a program’s operating system calls allows the program-
mer to analyse its behaviour at a low but well defined level. Program errors
can be explained in terms of the operating system calls that were (or were
not) issued, and these can in turn point to the source of the error.

Profiling System calls can consume a significant amount of program run time,
since the state of the machine must be saved and restored between calls.
A listing of the system calls can provide hints on areas of a program that
can be optimised to enhance a program’s speed.

Program verification A log of a program’s transactions with the operating
system can be used to verify a program against its specifications or a run
of a previous version. In addition, the log can be used to detect the use of
non-portable functions, or programs that have been infected by viruses.

23
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In other words, tracing is mainly used to understand what is happening and
how a given system behaves meanwhile performing a certain operation. To do
tracing you must always, for better or worse, be able to intercept some opera-
tions and make sure that a “trace” remains (from here the name) somewhere
(e.g. file, buffer in memory). What operations are traced and how they actually
do so define the tracing mechanism itself. But is tracing really useful? Computer
systems, both at the hardware and software-levels, are becoming increasingly
complex. In the case of Linux, used in a large range of applications, from small
embedded devices to high-end servers, the size of the operating system kernels
increases, libraries are added, and major software redesign is required to benefit
from multi-core architectures, which are found everywhere. As a result, the
software development industry and individual developers are facing problems
which resolution requires to understand the interaction between applications
and all components of an operating system [26].

2.2 Tracing tools

Before starting to investigate the tracing made directly by the operating system
with ftrace, it may be interesting to briefly analyze some tools that allow a
higher level of tracing. strace is a utility which allows you to trace the system
calls that an application makes. When an application makes a system call, it is
basically asking the kernel to do something (e.g. file access). Meanwhile ftrace
is a tool used during kernel development and allows the developer to see what
functions are being called within the kernel.

Another powerful tool that enable both kernel and userspace tracing is sys-
temtap, that will be discussed in Chapter 4.

2.2.1 strace

strace is a diagnostic, debugging and instructional userspace utility for Linux.
It is used to monitor and tamper with interactions between processes and the
Linux kernel, which include system calls, signal deliveries, and changes of process
state. System administrators, diagnosticians and trouble-shooters will find it
invaluable for solving problems with programs for which the source is not readily
available since they do not need to be recompiled in order to trace them. The
operation of strace is made possible by the kernel feature known as ptrace [16].

Let us have this simple source code:

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <sys/types.h>

4

5 int main(int argc, char** argv)

6 {

7 int testInteger;

8 pid_t pid = getpid();

9



CHAPTER 2. TRACING EVENTS IN LINUX 25

10 printf("My PID is: %d\n", pid);

11 printf("Enter an integer: ");

12 scanf("%d", &testInteger);

13 printf("Number = %d\n", testInteger);

14

15 return 0;

16 }

Once done, it will first print its pid. At this point, opening another terminal
and giving the command:

$ strace -p pid

And the output will be like:

strace: Process 1530 attached

read(0, "5\n", 1024) = 2

write(1, "Number = 5\n", 11) = 11

lseek(0, -1, SEEK_CUR) = -1

exit_group(0) = ?

+++ exited with 0 +++

In this specific example, there are mainly two system calls. Before, the
process reads an integer with read() (in this case: 5) and then it prints the
same integer with ther write(); where read() and write() are the system
calls.

2.2.2 ltrace

ltrace intercepts and records dynamic library calls which are called by an exe-
cuted process and the signals received by that process. It can also intercept and
print the system calls executed by the program, like strace. Keeping in mind
the same source code used by strace, let us see what happens with ltrace. The
procedure is very similar but this time the output will be:

printf("Number = %d\n", 2) = 11

+++ exited (status 0) +++

Unlike strace, this time printf() does not mean a system call but a library
call. Both tools, strace and ltrace, can be useful for developers to analyze high-
level software and understand where problems arise. But they certainly do not
say anything about what happens inside the kernel, for this reason step by step
we will now analyze a much more powerful tool useful for the described purpose.
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2.3 Tracing with ftrace

Before starting the discussion of ftrace it is good to specify that it is not the
only existing tool, but there are many others that are based more or less on the
same principles (e.g. perf events [10], eBPF [1], sysdig [17], LTTng [4]).

Kernel debugging is a big challenge even for experienced kernel developers.
For example, one difficulty is that if the system has latencies or synchronization
issues (undetected race conditions), it is really hard to pinpoint where these
issues are originated. Which subsystems are involved? In which conditions does
the problem arise? When the system is running, there is not always a way to
know the answer. ftrace is a debugger designed specifically to solve the issue
and to ease the developer’s debugging effort. Also, it is a great educational tool,
not just to peek at what happens in the kernel, but also to help approach the
source code.

The name comes from “function tracer”, which is one of its features among
many others. Each mode of tracing is simply called a tracer, and each one comes
with many options to be tuned. Therefore ftrace is also very extensible because
it is possible to write new tracers that can be added like a module.

2.3.1 Interfacing with ftrace

Whenever tracing, the events that need to be monitored are so frequent that
an extremely lightweight mechanism is needed. ftrace offers this possibility
because it is self-contained and entirely implemented in the kernel, requiring
no user space tools whatsoever. As stated earlier, the ftrace output, which is
produced from the kernel, is read from user space. How can we read it without
a specialized program?

The solution is to use a dedicated special filesystem on which the kernel and
the user can easily read/write: this creates a sort of shared memory between
the user and the kernel. This practice is very common on Unix-like systems
such as Linux; so common, in fact, that kernel process information is (almost)
always accessed in this way. This is done through the procfs filesystem, which
is found at /proc, as shown in Figure 2.1: every information about processes
is stored here and it is fully accessible from user space. You can see that there
is some generic information and also per-process information, with a folder for
each current pid.

The alternative approach to get this information would be to use a special-
purpose syscall, which is what BSD and MacOS do: the syscall will return
a kernel structure with all the information that needs to be parsed. The ap-
proach used by Linux is more straightforward: the information is (mostly) in
human-readable form, so you simply read the files in /proc and parse the re-
sults as strings. By doing so, no syscall is needed, except, of course, open()
and read() to interact with the filesystem. On Linux, when commands such
as ps, top or pgrep are invoked, they internally query the procfs filesystem.
You could always do the same operation manually by doing something like
cat /proc/1337/info_that_you_need | grep specific_info, but it would
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Figure 2.1: The procfs special filesystem

be tedious: this is why utilities like ps are convenient front-ends for the user.
There are also other specialized filesystems, for example sysfs, which con-

tains system information; but what iterests us is debugfs, which contains ker-
nel debug information and allows interatcion with ftrace. This filesystem is
mounted by executing mount -t debugfs nodev /sys/kernel/debug/: since
there is not an actual device that is being mounted, we use “nodev” as target
device; /sys/kernel/debug/ is the target mount point. In Figure 2.2 you can
see the trace folder located in this filesystem. To interact with ftrace you simply
write in these files with echo your_value > file: by doing this you can toggle
options and set parameters before/during the trace.

Figure 2.2: Tracing folder inside the debugfs special filesystem

The purpose of some of these files is not to set options. Rather, it is
to list available options. For instance, in Figure 2.3, the available tracers
are listed. These are essentially tracing modes: we activate one by doing
echo function > current_tracer, which will immediately start to trace with
the “function” tracer. We can then see the trace output by simply executing
cat trace. Most of the other files are used for filtering what is being traced,
which we will see in detail in the upcoming section.

Basically, we can interact with ftrace using the filesystem. Later, we also
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Figure 2.3: Types of tracers on by distribution (OpenSUSE Tumbleweed)

analyze other methods like trace-cmd (Section 2.3.4) and kernelshark.

$ cd /sys/kernel/debug/tracing

$ echo function > current_tracer

$ cat trace

2.3.2 Function tracing

Let us write a simple script that traces any input process.

1 #!/bin/bash

2 # traceprocess.sh

3 echo $$ > /sys/kernel/debug/tracing/set_ftrace_pid

4 echo function > /sys/kernel/debug/tracing/current_tracer

5 exec $1

$$ is the variable that contains the pid of the script itself, and $1 is the first
argument of the script: in this case, the process to trace. The way it works is
very simple:

1. Set this pid as the one that will be traced

2. Set the tracer to the function tracer

3. Execute the input program

4. The executed program will replace the process of the script itself, so the
command passed as first argument to the script will be traced

Usually, we would see every kernel function that the input process calls,
which is sometimes a big and uninformative output that needs filtering. The
trace output can be found in the file /sys/kernel/debug/tracing/trace, or
can be viewed as it gets written in /sys/kernel/debug/tracing/trace_pipe.
The following is an output of ./traceprocess.sh ls, which traces ls.

localhost:/sys/kernel/debug/tracing # head -n 20 trace

# tracer: function

#

# entries-in-buffer/entries-written: 204971/5796026 #P:4

#

# _-----=> irqs-off
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# / _----=> need-resched

# | / _---=> hardirq/softirq

# || / _--=> preempt-depth

# ||| / delay

# TASK-PID CPU# |||| TIMESTAMP FUNCTION

# | | | |||| | |

ls-12284 [000] .... 2755.250236: security_inode_permission <-link_path_walk.part.0

ls-12284 [000] .... 2755.250236: open_last_lookups <-path_openat

ls-12284 [000] .... 2755.250236: lookup_fast <-open_last_lookups

ls-12284 [000] .... 2755.250236: __d_lookup_rcu <-lookup_fast

ls-12284 [000] .... 2755.250236: step_into <-open_last_lookups

ls-12284 [000] .... 2755.250236: __follow_mount_rcu <-step_into

ls-12284 [000] .... 2755.250236: do_open <-path_openat

ls-12284 [000] .... 2755.250236: complete_walk <-do_open

ls-12284 [000] .... 2755.250236: unlazy_walk <-complete_walk

As expected, we only see function traced during the execution of ls. This
information is not that useful by itself, but what is useful, instead, are the
timestamps: with these, it is easy to detect latencies in the kernel. By using
kernelshark the trace can be plotted to visualize the latencies; also, this may
be used to estimate which actions cause most overhead. Another way of doing
this just with ftrace is to use the function_graph tracer: it is similar to the
function tracer, but it shows the entry and exit point of each function, creating
a function call graph. Instead of timestamps it shows the duration of each
function execution. The symbols +, ! # are used whenever there is an execution
time greater than 10, 100 and 1000 microseconds. As we know, scheduling and
thread migration cause a lot of overhead, so we can try to use function_graph

to see it.

localhost:/sys/kernel/debug/tracing # head -n 150 trace

# tracer: function_graph

#

# CPU DURATION FUNCTION CALLS

# | | | | | | |

2) 0.102 us | } /* text_poke_flush */

2) | text_poke_loc_init() {

2) 0.109 us | insn_init();

2) | insn_get_length() {

2) | insn_get_immediate.part.0() {

2) | insn_get_displacement.part.0() {

2) | insn_get_sib.part.0() {

2) | insn_get_modrm.part.0() {

2) | insn_get_opcode.part.0() {

2) | insn_get_prefixes.part.0() {

2) 0.100 us | inat_get_opcode_attribute();

2) 0.101 us | inat_get_opcode_attribute();

2) 0.100 us | inat_get_opcode_attribute();

2) 0.704 us | }

This is small piece of a trace using function graph. Function duration is located
at every leaf function and function exit point (}). Is important to keep always
in mind that the buffer can be filled and some entries could be lost: this is very
common if you trace everything without filtering. To mitigate this we can trace
on a single CPU, instead of all 4. This approach has three advantages:
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• The output has not function calls interleaved between the CPUs, which
breaks the flow of function calls

• Since fewer entries are traced, the buffer is not filled and many will not
be lost

• There is a performance gain: tracing every single function call generates
significant overhead.

In general, it is better to narrow the filters as much as possible. For example,
it would be good to trace only the function that we are interested in, and on
one CPU only.

2.3.3 Event tracing

Function tracing is very useful and will come in handy to understand the code,
but now we will focus on events. You may have noticed in Figure 2.2 that there
is a directory called “events”. It contains a folder for each event subsystem (as
shown in Figure 2.4). Now let us focus on kvm events. Figure 2.5 shows its
contents: there is a folder for each event, containing information about it and a
switch to enable/disable it2.6.

Figure 2.4: List of macro-event’s section

Figure 2.5: Every event associated with kvm
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Figure 2.6: Control files for the kvm entry event

Let us now see how event tracing is enabled and how to filter events. Events
are not related to any tracer because tracers are used for dynamic tracing only.
If we want to see just the events, then we must use the nop tracer (which does
not trace anything), but we could also trace events while tracing functions by
enabling any other tracer.

# enable kvm events

$ echo nop > /sys/kernel/debug/tracing/current_tracer

$ echo 1 > /sys/kernel/debug/tracing/events/kvm/enable

# enable just the kvm_entry events

$ echo nop > /sys/kernel/debug/tracing/current_tracer

$ echo 1 > /sys/kernel/debug/tracing/events/

kvm/kvm_entry/enable↪→

The “enable” file is located in every folder of the event directory tree. As
you can see, the directory hierarchy is used to toggle single events, entire event
subsystems, or all the existing events. Be aware that this filter does not stop
the events from being written in the trace buffer, we are just ignoring them.
“You have to recompile the whole kernel to disable specific events” can be
paraphrased as “You have to recompile the whole kernel to prevent ftrace from
writing specific events in its buffer, even when they are disabled from debugfs”.

The following is a small piece of a trace of every kvm entry event:

# tracer: nop

#

# entries-in-buffer/entries-written: 360039/5452116 #P:4

#

# _-----=> irqs-off

# / _----=> need-resched

# | / _---=> hardirq/softirq

# || / _--=> preempt-depth

# ||| / delay

# TASK-PID CPU# |||| TIMESTAMP FUNCTION

# | | | |||| | |

CPU 0/KVM-10145 [002] d... 663.282125: kvm_entry: vcpu 0

CPU 0/KVM-10145 [002] d... 663.282127: kvm_entry: vcpu 0

CPU 0/KVM-10145 [002] d... 663.282129: kvm_entry: vcpu 0

CPU 0/KVM-10145 [002] d... 663.282132: kvm_entry: vcpu 0

CPU 0/KVM-10145 [002] d... 663.282135: kvm_entry: vcpu 0

CPU 0/KVM-10145 [002] d... 663.282138: kvm_entry: vcpu 0
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CPU 0/KVM-10145 [002] d... 663.282142: kvm_entry: vcpu 0

# ... many more entries ...

In this trace the virtual cpu 0 (vCPU0) starts executing the virtual machine
code on the host CPU2. So the virtual CPUs of the guests are treated exactly
like all the other processes of the host. In other words, from the host’s point
of view, virtual CPUs are nothing more than processes, therefore they will be
scheduled together with all the other processes on the machine. Obviously you
can trace the kvm_exit event and its operation is similar to the previous one.
In particular, after this event the host code starts running again on the cpu.

2.3.4 trace-cmd

After figuring out how to use ftrace using the filesystem directly, let us analyze
how to do it more immediately. The trace-cmd command interacts with the
ftrace tracer that is built inside the Linux kernel. It interfaces with the ftrace
specific files found in the debugfs file system under the tracing directory. A
command must be specified to tell trace-cmd what to do [19].

ftrace allows you to make and specify infinite options, trace-cmd cannot be
outdone in fact there are many commands and each of them has many options.
The two most important commands are record 2.7 and report 2.8. Let us see
an example, this time by tracing the kvm_exit event.

# Interfacing through a command-line program

$ sudo trace-cmd record -e kvm:kvm_exit

$ sudo trace-cmd report

The record command starts capturing until we stop it with the usual ctrl+c
(interrupting signal). A trace.dat file with all the traced information will then
be created to the current folder (Figure 2.7 shows the output of trace-cmd

record). After the recording phase, we can read the trace.dat file by the
report command (Figure 2.8 shows the output of trace-cmd report).

Figure 2.7: Output of the command trace-cmd record
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Figure 2.8: Output of the command trace-cmd report



Chapter 3

The Intel Skylake family of
processors

3.1 Introduction

In this chapter we are going to discuss various trait of Intel’s processors re-
garding power management, focusing on architectures subsequent to Skylake.
This is because from Skylake onward, Intel introduced the power management
technology of interest, known as Intel’s Speed Shift or Hardware-Controlled
Performance State (HWP), presented in Section 3.4. Nevertheless, Sections 3.2
and 3.3 describe some useful concepts that also applies to previous generations.

Skylake (SKL) is Intel’s successor to Broadwell, a 14 nm process microar-
chitecture that exists in two configurations, targeted to different purposes [21]:

Server for enthusiasts and servers

Client for mainstream workstations, desktops, and mobile devices

3.2 Performance states

Performance states, or more briefly p-states, are responsible of dynamically
changing the frequency and the voltage of the system. These states are ex-
tremely useful when idling or when full CPU power is not required. Lowering
the voltage will in fact decrease the power consumption and increase the time
taken to complete a task, which is often acceptable. A quick raise in voltage is
instead desirable when the workload requires low latency and great computa-
tional power. P-states represents the biggest variable in power and performance
contexts, to the point that their impact is greater then all other power manage-
ment features combined.

34
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MSR Address Bits Description

IA32 APERF 0xE8 63:0
Always running measure of time.
Increments when processor is active at the
current operating frequency of the part.

IA32 MPERF 0xE7 63:0
Always running measure of time.
Increments when processor is active at the
CPU base frequency of the part.

PPERF 0x64E 63:0
Productive performance count, which
provides a quantitative metric to software
of hardware’s view of workload scalability.

Table 3.1: MSRs involved in DVFS, performance counters

3.3 MSR

Since their relevance in DVFS, this section introduces the most important Model
Specific Registers (MSR), whose usage is related to p-states and will be ex-
plained in section 3.4.1. MSRs are x86 instruction set control registers, re-
sponsible for OS-relevant tweaks such as debugging, program execution tracing,
computer performance monitoring, and toggling certain CPU features [5]. Here
we will analyze only the ones of interest. It is worth noting that the prefix of the
architectural MSRs, that is “IA32 ”, is often omitted since they all begin with
it. Architectural MSRs are a subsets of MSRs carried from Intel Architecture
32 bits (IA32), whose name is left so for historical reasons. During our analysis
we are also going to elide their names.

The first three MSRs we are going to see are the performance counters shown
in Table 3.1: APERF, MPERF and PPERF (the only non architectural one of three).

Values of these registers are not relevant by themselves, but they become
so if compared to each other, providing an hardware’s feedback mechanism
to software. For example, the average frequency of a processor is obtained
by calculating the ratio of APERF and MPERF and multiplying it by the base
frequency. This ratio also indicates whether the CPU is going turbo or not by
checking if it is greater than 1 (turbo on) or less than 1 (turbo off). Another
useful parameter is the ratio between PPERF, that can be seen as a counter of
non stalled cycles, and APERF. That indicates if the workload is scalable.

HWP_REQUEST is considerably more complex, due to bits range significance,
and is therefore shown in Table 3.2.

One more useful MSR is HWP_REQUEST_PKG, that, as one would expect, is
the equivalent of HWP_REQUEST but for the whole package, at the sole exception
of bits 63:42 that are reserved, and is thus omitted.

Table 3.3 shows, with less detail, other registers not directly related to DVFS,
but still of significance within the general framework of these decisions, and
therefore worth mentioning.
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Table 3.2: IA32 HWP REQUEST register, address 0x774

Bits Description

7:0
Minimum Performance: minimum performance hint
to achieve the required quality of service

15:8
Maximum Performance: maximum performance
that is expected to be supplied by HWP

23:16
Desired Performance: if 0 is hardware autonomous,
otherwise conveys an explicit performance request

31:24
Energy Performance Preference: from 0 (max
performance) to 0xFF (max power performance).
It influences the rate of performance increase and decrease

41:32
Activity Window: moving workload history observation
window for performance optimization.
If 0 is hardware determined

42
Package Control: derive bits 41:0 from
HWP REQUEST PKG

58:43 reserved, all 0

59
Activity Window Valid: when set, derive bits 41:32
from HWP REQUEST PKG even if bit 42 is set

60
EPP Valid: when set, derive bits 31:24
from HWP REQUEST PKG even if bit 42 is set

61
Desired Valid: when set, derive bits 23:16
from HWP REQUEST PKG even if bit 42 is set

62
Maximum Valid: when set, derive bits 15:8
from HWP REQUEST PKG even if bit 42 is set

63
Minimum Valid: when set, derive bits 7:0
from HWP REQUEST PKG even if bit 42 is set

MSR Address Description

IA32 TIME STAMP COUNTER 0x10

Always running measure of logical
processor time. Increments when the
processor is active or idle at the CPU base
frequency of the part

IA32 THERM STATUS 0x19C

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities. Also exists
for the package at address 0x1B1,
IA32 PACKAGE THERM STATUS

TEMPERATURE TARGET 0x1A2
Contains thermal information complementary
to IA32 THERM STATUS, like maximum
temperature. It is package scoped

Table 3.3: Auxiliary MSRs involved in DVFS
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Figure 3.1: P-states schema. Image borrowed from IDF15 [32]

3.4 Hardware-Controlled Performance State

As mentioned before, p-states are the core of power management, and deciding
whose is responsibility has been debated for years. Historically has always been
software’s, since its unique information (process that are running, their priority
and the dependency between each other, etc. . . ) are not negligible benefits.
However, Intel decided to migrate these decisions to hardware from the 6th
generation, introducing Hardware-Controlled Performance State. This change
has many advantages:

• less overhead in monitoring/calculating

• faster changes detection

• more hardware related info, like power, thermal, available resources

Before continuing we need to understand what is the real task to get done
when choosing the “right” performance. P-states range from P0 to Pn, where
P0 is the highest turbo frequency, and Pn is the lowest one (LFM in Figure 3.1);
the number of p-states in this interval and their values are processor dependent.

If we imagine to have a task that needs to get done, we have two factors to
consider:

1. the energy that the system needs to complete the task (green in Fig-
ure 3.2); low if this happens in a short amount of time, raises if in poor
performances. It can be approximated at ∼ 1

f
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Figure 3.2: Most efficient P-state. Image borrowed from IDF15 [32]

2. the energy that the computation needs to achieve the task (red in Fig-
ure 3.2). Raises at higher performances. It can be approximated at ∼f2

The total energy consumed is the sum of the compute energy and the system
energy. This sum implies that there is an optimal point (yellow Pe in Figure 3.2),
where this value is the minimum.

The goal of HWP is to always select Pe. HWP does so every 1ms, utilizing
an algorithm known as EARtH (Energy Aware Race to Halt [28]).

Going back to our main problem, we still need to define what is the role
of software in such mechanism. In voltage-frequency control, the voltage and
clocks that drive circuits are increased or decreased in response to a workload.
The operating system requests specific P-states based on the current workload.
The processor may accept or reject the request and set the P-state based on its
own state [8].

Despite its name, this system aims thus at a cooperation between hardware
and software to provide p-states. HWP gives in fact software the ability to sup-
ply a target frequency range to operate within along with performance guidance
hints. This allows software to use its unique information to provide guidance
and for hardware to optimize the selection of p-states within those software pro-
vided constraints. If software has no unique information to provide, hardware
has the ability to autonomously select p-states.

This collaborative environment is possible thanks to an interface between
the two worlds, that ideally would join the natural repsonsiveness of hardware
with the software “picture” taken from the operating system leading to smarter
DVFS decisions.

3.4.1 HWP software interface

Software utilizes writes to MSRs rather than executing instructions to handle
p-state transitions. Typically, the operating system controls HWP operation for
each logical processor via the writing of control hints to the
IA32 HWP REQUEST MSR. It can control HWP by writing both
IA32 HWP REQUEST and IA32 HWP REQUEST PKG MSRs, taking advan-
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tage of the “valid” bits, 63:59, shown in Table 3.2. The OS may override
HWP’s autonomous selection of performance state with a specific performance
target by setting the Desired Performance field to a non-zero value, however,
the effective frequency delivered is subject to the result of energy efficiency and
performance optimizations, which are influenced by the Energy Performance
Preference field. Software may disable all hardware optimizations by setting
Minimum Performance = Maximum Performance.

For the user, writing to MSRs is not however much intuitive nor easy. For
this purpose Intel provides an utility named msr-tools [6], that allows to read
(rdmsr) and write (wrmsr) MSRs. Its usage is straightforward and covers almost
any use case. It is useful to look at their help function, rdmsr -h and rdmsr -h,
that shows a comprehensible list of available features:

# rdmsr

Usage: rdmsr [options] regno

--help -h Print this help

--version -V Print current version

--hexadecimal -x Hexadecimal output (lower case)

--capital-hex -X Hexadecimal output (upper case)

--decimal -d Signed decimal output

--unsigned -u Unsigned decimal output

--octal -o Octal output

--c-language -c Format output as a C language constant

--zero-pad -0 Output leading zeroes

--raw -r Raw binary output

--all -a all processors

--processor # -p Select processor number (default 0)

--bitfield h:l -f Output bits [h:l] only

# wrmsr

Usage: wrmsr [options] regno value...

--help -h Print this help

--version -V Print current version

--all -a all processors

--processor # -p Select processor number (default 0)

Below an example that reads the EPP field from HWP REQUEST:

1 $ rdmsr -f 31:24 0x774

2 $ 80

The only thing that is not treated is the write of specific bits. This problem
will be the subject of Section 5.2.3.



Chapter 4

The SystemTap tool

4.1 Introduction

When it comes to tracing, having a performing tool is essential: remaining low
on resources allows to avoid interference with the running system without a
noticeable footprint, and this is preferable even at the expense of ease of use.

“SystemTap provides free software (GPL) infrastructure to simplify the gath-
ering of information about the running Linux system. This assists diagnosis
of a performance or functional problem. SystemTap eliminates the need for
the developer to go through the tedious and disruptive instrument, recompile,
install, and reboot sequence that may be otherwise required to collect data.
SystemTap provides a simple command line interface and scripting language for
writing instrumentation for a live running kernel plus user-space applications.
[. . . ] Among other tracing/probing tools, SystemTap is the tool of choice for
complex tasks that may require live analysis, programmable on-line response,
and whole-system symbolic access. SystemTap can also handle simple tracing
jobs” [18].

In the case of SystemTap, there is not in fact the need of a convoluted syntax
in order to have a reasonable expressive power, since it has almost no overhead
while still maintaining a lean syntax that resembles C. This uncompromising
characterization makes it a suitable choice when dealing with more complex
and dynamic scenarios. In this chapter we are going to introduce its basics,
focusing on the features used in the experiments illustrated in Chapter 5.

For a deeper understanding it is especially suggested to look into the follow-
ing man pages:

stap the front-end to SystemTap

staprun the back-end of SystemTap

stapprobes supported probe points (see Section 4.2.3)

stapfuncs supported functions

40
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4.2 Language overview

SystemTap is a tracing/scripting/event-action programming language, written
in C and C++ that was firstly released in 2005. While the first two definitions
are intuitive (tracing and scripting), the last one deserves further explanation.
Its event-action design is one of the key features of this tool: the language al-
lows the link of a point in the source code (or of an event in the kernel) to
an handler, generally a function, that is executed synchronously and that can
contain arbitrary portion of code; having that power enables fine-grained trac-
ing, corresponding to basically any event that needs an analysis in both kernel
and user space. Despite being stable software, it is still in development (many
features are still being added), and among its contributors appear corporations
like Red Hat, IBM, Oracle and Intel. The language is strictly typed, expressive,
declaration free, procedural, prototyping-friendly, and inspired by awk and C.

Since its similarities with C and its intuitive nature, we are going to discuss
only its peculiarities that differentiates with it substantially or that simply are
unique to the language.

4.2.1 Types of scripts

There are two types of scripts in SystemTap:

probe script regular programs that identifies probe points and associated han-
dlers

tapset scripts collection of probes and functions organized in libraries, can
not be run directly

Example of probe script:

1 // will run only once, hence the name

2 probe oneshot {

3 printf("hello world\n")

4 }

4.2.2 Built-in functions

In addition to trivial functions like the formatting ones (printf ecc. . . ), Sys-
temTap provides useful built-in that helps the user with recurrent tasks.

1 tid() // the id of the current thread

2 pid() // the process (task group) id of the current thread

3 uid() // the id of the current user

4 execname() // the name of the current process

5 cpu() // the current cpu number

6 task_cpu(TASK) // the scheduled cpu of the task

7 pid2task(PID) // the task struct of the given process id

8 gettimeofday_s() // number of seconds since epoch

9 get_cycles() // snapshot of hardware cycle counter
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10 pp() // description of the probe point being currently handled

11 ppfunc() // the function name in which this probe was placed

12 print_backtrace() // print a kernel backtrace

13 print_ubacktrace() // print a user-space backtrace

14 target() // print target PID, if set

The code above shows some those functions and explains in the comments their
return values, for a full list run man -k "function::".

4.2.3 Probe points

Probe points identify an event that can trigger a SystemTap’s event handler. Its
syntax is a dotted-symbol sequence à la Domain Name System (DNS), param-
eterized like a function whose arguments are strings, numbers and wildcards. A
probe point needs/can (depends on which one is being used):

• a prefix that identifies the family of the target (kernel, scheduler, process,
module, etc. . . )

• a suffix that further qualifies the exact point to probe (return, maxac-
tive(n), statement(0xXXXX), label(s), etc. . . )

1 // examples of probes

2 probe scheduler.ctxswitch {...}

3 probe process(my_program_pid).end {...}

4 probe process("/bin/bash").begin {...}

5 probe syscall.*

SystemTap offers a huge variety of probe points (some of which are contained
in tapsets), regarding kernel and user space. Here we will only look on into some
of them, since at SystemTap version 4.5/0.183 there are ∼300 types of different
probes! In order to see a comprehensive list of available probes and tapsets run:
man -k "probe::" and man -k "tapset::”, respectively.

Basic probes

The first two probes we are going to look are strongly related to each other:
begin and end, two probes of the special family. The former is the second
portion of code that get executed when SystemTap is run (the first one is the
initialization of global variables), the latter is the last one and get executed when
the script ends and the exit() function is called. These are useful for preparing
the environment and for analyzing what has been collected, respectively.

Another helpful probe family is the timer. Having a timer that runs arbi-
trary portion of code at regular interval (s, ms, ns, etc. . . ) has obviously many
potential use cases.

Below an example that takes advantages of the explained probes.
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1 global count

2

3 probe begin {

4 printf("The script is starting...\ncount equals %d\n", count)

5 }

6

7 probe end {

8 printf("The script is ending...\ncount equals %d\n", count)

9 }

10

11 probe timer.s(1){

12 count ++

13 }

This simple example counts the number of second elapsed between its launch
and the time to whom the user stops it, e.g. with ^-C. A run will print out:

The script is starting...

count equals 0

^CThe script is ending...

count equals 3

More complex and useful scripts can be found at SystemTap’s website [18].

4.2.4 Target variables

Apart from “usual” variables, there is one unique type of variables, known as
target or context variable (since their meaning is contextual to the point being
probed). These variables are preceded with a “$” and are available for certain
kernel probes and allow access to variables defined in the source code at that
location. Their availability can be checked with:

stap -L 'family.probe("probename_or_wildcard")'

For example the output of stap -L 'kernel.trace("*sched*")', is:

kernel.trace("btrfs:btrfs_ordered_sched") $work:struct btrfs_work const*

kernel.trace("btrfs:btrfs_work_sched") $work:struct btrfs_work const*

kernel.trace("irq_vectors:reschedule_entry") $vector:int

kernel.trace("irq_vectors:reschedule_exit") $vector:int

Context variables can also be printed inside a probe by accessing the variable
$$vars.

In addition to those variables, some probes and functions, not necessarily ker-
nel’s one, may contain useful additional values. These can be shown by looking
at individual man pages, e.g.: man 'probe::scheduler.ctxswitch(3stap)'.
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4.2.5 Embedded C and guru mode

SystemTap provides an advanced mode called guru mode, where it is possible to
bypass code and data safety checks and in addition to that, to embed standard C

code. C code needs to be wrapped between “%{” and “}%” and can be extremely
useful for accessing #include instructions. It is possible to embed functions’
body, single expressions, top level instructions and pragma comments (compiler
optimizations).

The following code snippet shows all the four options in use.

1 %{

2 #include <linux/in.h>

3 #include <linux/ip.h>

4 %} // top level

5

6 /* Reads the char value stored at a given address: */

7 function __read_char:long(addr:long) %{ /* pure */ // pragma comment

8 STAP_RETURN(kderef(sizeof(char), STAP_ARG_addr));

9 CATCH_DEREF_FAULT ();

10 %} // function body

11

12 /* Determines whether an IP packet is TCP, based on the iphdr: */

13 function is_tcp_packet:long(iphdr) {

14 protocol = @cast(iphdr, "iphdr")->protocol

15 return (protocol == %{ IPPROTO_TCP %}) // expression

16 }

For enabling guru mode see Section 4.3.

4.2.6 Statistics and aggregates

SystemTap has built-in functionalities to quickly gather and manipulate nu-
merical values in large volume: statistics functions and aggregates. Aggregate
instances are used to collect this data, they operate without exclusive locks, and
store only aggregated stream statistics. Extracting functions perform statistics
computations when called.

The usage of aggregates is fairly straightforward:

1 timestamps <<< gettimeofday_s() // simple array

2 reads[execname()] <<< count // associative array

Below a comprehensive listing of available functions, where s is the aggre-
gates with whom the aggregations are calculated:

@count(s) returns the number of samples in s

@sum(s) returns the sum of all samples in s

@min(s) returns the minimum of all samples in s

@max(s) returns the maximum of all samples in s
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@avg(s) returns the average of all samples in s

@hist linear(s, L, H, W) returns a visual representation of a linear histogram
of s, where L and H represent the lower and upper end of a range of values
and W represents the width (or size) of each bucket within the range

@hist log(s) returns a visual representation of a base-2 logarithmic histogram

4.3 Command line flags and arguments

The SystemTap tool has many command line options, here we will analyze only
the one of interests of the stap executable.

-g enables guru mode, explained in Section 4.2.5

-i interactively build the script

-t collect timing information on the number of times probe executes and average
amount of time spent in each probe-point. Also shows the derivation for
each probe-point

-T NUM exit the script after NUM seconds

-o NAME send standard output to file NAME

-s NUM use NUM megabyte buffers for kernel-to-user data transfer

-D NAME=VALUE add the given C preprocessor directive to the module
Makefile

–suppress-time-limits suppress time’s related checks.This option requires guru
mode

-x PID sets target() to PID

-c CMD sets target() to PID, start the probes, run CMD, and exit when
CMD finishes

-k keep the temporary directory after all processing. This may be useful in
order to examine the generated C code, or to reuse the compiled kernel
object

-v increase verbosity of the session (see Section 4.4 for more details)

For the meaning of function target(), from flags -x and -c, see Section 4.2.2.
These options are extremely relevant when filtering on a specific process. Usage
of flags -k and -v is explained in Section 4.4.

A SystemTap script can have command line arguments with a similar syntax
to usual shells, like e.g. bash. Arguments are accessed via $ or @, depending
on if the value is a number or a string, respectively.
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4.4 Real-word example and operating principle

A SystemTap session begins when a SystemTap script (.stp file) is run with
stap, or alternatively by using the shebang convention [14]. This session occurs
in the following fashion:

1. First, SystemTap checks the script against the existing tapset library (nor-
mally in /usr/share/systemtap/tapset/) for any tapsets used. Sys-
temTap will then substitute any located tapsets with their corresponding
definitions in the tapset library

2. SystemTap’s tools translates the script to C in a temporary directory under
/tmp/, running the system C compiler to create a kernel module from it

3. staprun loads the module, then enables all the probes (events and han-
dlers) in the script

4. As the events occur, their corresponding handlers are executed

5. Once the SystemTap session is terminated, the probes are disabled, and
the kernel module is unloaded

In order to better understand this process it can be useful to keep the gen-
erated translation of C kernel-code, with the flag -k, and to increase passes
verbosity with -v.

Below a full example that trace syscalls (see Chapter 1.2.1 for details) as
follows:

1. probes on any syscall

2. when a syscall is made:

• checks if the process that is doing a syscall is the target of the script,
if that is the case it prints out the name and the number of the syscall
and increments syscalls_tar

• increments syscalls_tot

3. before exiting, prints out the total number of syscalls registered during
the session, from both the target and the operating system

1 // syscalls.stp

2 global syscalls_tar, syscalls_tot

3

4 probe syscall_any {

5 if (pid() == target()){

6 printf("Target makes syscall: %s, number %d\n", name, syscall_nr)

7 syscalls_tar ++

8 }

9 syscalls_tot ++

10 }

11
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12 probe end {

13 printf("\nTotal number of syscalls made by target is %d\n", syscalls_tar)

14 printf("Total number of syscalls is %d\n", syscalls_tot)

15 }

This script is called with the flags explained in Section 4.3 and has as the target
(flag -c), a simple GNU-find command that counts the number of lines on each
file of the linux kernel source code whose size is between 10KB and 20KB.

sudo stap -g -v -c "find /usr/src/linux/ -type f \

-size +10k -size -20k \

-exec wc -l {} \; > /dev/null" \

-o results.txt -k ./syscalls.stp

In standard out we get a detailed description of the passes:

Pass 1: parsed user script and 480 library scripts using

121880virt/104512res/11472shr/92780data kb, in 260usr/30sys/282real ms.

Pass 2: analyzed script: 3 probes, 4 functions, 95 embeds, 6 globals using

138092virt/122004res/12656shr/108992data kb, in 240usr/140sys/383real ms.

Pass 3: translated to C into "/tmp/stapHvnDbd/stap_1143606_src.c" using

138092virt/122004res/12656shr/108992data kb, in 20usr/0sys/25real ms.

Pass 4: compiled C into "stap_1143606.ko" in 6810usr/780sys/6683real ms.

Pass 5: starting run.

Pass 5: run completed in 980usr/450sys/1868real ms.

Keeping temporary directory "/tmp/stapHvnDbd"

And by doing a cat results.txt:

Target makes syscall: rt_sigreturn, number 15

Target makes syscall: rt_sigaction, number 13

Target makes syscall: rt_sigprocmask, number 14

[...]

Target makes syscall: rt_sigprocmask, number 14

Target makes syscall: rt_sigprocmask, number 14

Target makes syscall: exit_group, number 231

Total number of syscalls made by process is 259

Total number of syscalls is 217841



Chapter 5

Extracting processor
internal features

5.1 Introduction

From Intel’s Skylake processors onward, dynamic voltage and frequency scaling
(DVFS) decisions happen in hardware. This feature is called Intel Speed Shift
technology, discussed in Chapter 3. Although the algorithm is publicly avail-
able, the parameters controlling these decisions are silicon-dependent, therefore
“naturally” difficult to take advantage of from a software perspective. The prob-
lem is that software is the gist of the workload done on computers, and the role
of operating systems in controlling such work is often overlooked, despite being
one of the most important part in determining both the speed and the power
consumption decisions. An optimized OS can make the difference in both these
aspects by staying in low power states or bursting the CPU, when it should
ideally do so. Getting this balance right is alone as crucial as difficult, and
moreover this adaptive behavior is limited by the lack of deep communication
between hardware and software.

Our goal is to understand DVFS internals by inferring the above-mentioned
parameters, in order to take conscious OS-level choices. The process of reverse-
engineering such mechanism is ambitious, therefore still not at its final stage.

5.1.1 A simple overview

In order to achieve our goal we need to have a convenient way to examine MSRs
(see Section 3.3 for more details), which are exposed to the user to monitor and
control the CPU behavior. To summarize the phases to be discussed later on,
we need to:

• have a configurable benchmark during which we trace our MSRs, according
to various parameters, and

48
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• analyze output data.

Of course, we do not want it to be tedious to work with, so we also need some
sort of automation between various tests.

5.2 The tool chain

The tools needed to conduct the target analysis may vary substantially. The
choice of tools must balance availability, simplicity, fitness. Also, the user must
be comfortable enough with them. Our choice is:

Tracing: systemtap It is a full-featured tracing environment, still simpler
than the raw ftrace. The key feature used is the capacity to read MSR
in response to given events (see Chapter 4 for more details).

Benchmarking: rt-app It allows a very fine control of the temporal charac-
teristics of the workload.

Automating execution: bash Very standard shell that enables scripting.

Log analysis: Jupyter (python) Well-known interactive data science and
scientific computing open-source software, especially thanks to Jupyter
Notebooks.

5.2.1 Systemtap script

The first phase consists in gathering data from the CPU, during a controlled
benchmark (see Section 5.2.2). This stage is extremely delicate because the
wrong tool (or its wrong usage), could potentially consume an excessive amount
of resources, hence biasing significantly the evaluation. In other words, it is the
only moment when we really care about the overhead. As discussed in Chapter 4,
systemtap is an appropriate way to trace since it compiles in kernel’s modules.

One of many useful probes of systemtap (see Section 4.2.3 for details) allows
us to trace and link some actions (a function), to an interval, as explained in
Section 4.2.3. This feature is needed to have a temporal overview of what is
happening inside the CPU during our benchmark. Assuming everything else is
configured properly, the code below does exactly that:

1 // log MSRs each £1 microseconds

2 probe timer.us($1) {

3 // attach some actions to the timer...

4 fill_entry()

5 }

The fill_entry function populates arrays containing:

• the following MSRs: MPERF, APERF, PPERF, TSC (see Section 3.3 for more
information about their meaning)
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• the temperature, determined by IA32_TEMPERATURE_TARGET

and IA32_THERM_STATUS

• the CPU where it is executed systemtap

• the CPU where it is executed rt-app

• the state of the benchmark, 0 if it is sleeping, 1 otherwise

The readings of registers are made possible by one of the most powerful fea-
tures of systemtap: the capability to embed C code, discussed in Section 4.2.5.
Below an example function, used to read a register responsible for the temper-
ature:

1 function read_dts:long() %{

2 u64 dts, pkg_therm_status;

3 rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, pkg_therm_status);

4 dts = (pkg_therm_status >> 16) & 0x7F;

5 STAP_RETURN(dts);

6 %}

Most of other items in the list are made trivial by systemtap built-in func-
tions (see Section 4.2.2 for an overview of them): CPUs of systemtap and
rt-app are found with cpu() and task_cpu(pid2task(target())), respec-
tively; the temperature is found in C similarly to turbostat [20]. The less
straightforward one is the status of the running benchmark. It needs in fact a
probe from the scheduler family.

1 // check for context switches regarding £target

2 probe scheduler.ctxswitch {

3 if (next_pid == target())

4 running = 1

5 else if (prev_pid == target())

6 running = 0

7 }

The code checks if, in the scope of the current context switch, the benchmark
is involved: if it is so, it changes the running variable accordingly (1 if it is the
next process to be scheduled, 0 if it is the one that is being de-scheduled). See
Section 4.2.2 and 4.3 for details about target().

Readings frequency

Looking at the systemtap script shown in Section 5.2.1, one wonders what can
be an appropriate $1, that is the amount of time between each read of MSRs.

Reading MSRs is a cost-intensive task at around ∼1000 CPU cycles. We
decided to test its efficiency with a simple systemtap script that loops 10 mil-
lion times and evaluates the time spent for and between readings, and finally
stores them in a set thanks to the aggregation operator (<<<, discussed in
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Section 4.2.6). This test aims to address two questions: what is the times in
microseconds required to read these registers, as well as check if there may occur
any errors if the interval between readings is too short. The latter is achieved
by a property of MPERF, namely the fact that it should never “fall”, go down,
over time. The if statement verify exactly this case.

1 prev = 0

2 i = 0

3 old_read = 0

4

5 while(i++ < 10000000){

6 start_t = gettimeofday_ns()

7 new = read_mperf()

8 end_t = gettimeofday_ns()

9

10 if(new <= prev){

11 printf("End, invalid mperf value:%d vs old:%d, limit found us\n",

12 new, prev)

13 break

14 }

15

16 prev = new

17

18 // stat on time per read

19 elapsed_t = end_t - start_t

20 time_on_read <<< elapsed_t

21

22 // stat on time bewteen read, skipping first

23 if (old_read)

24 intervals <<< end_t - old_read

25

26 old_read = end_t

27 }

We then used some built-in functions, presented in Section 4.2.6, to obtain
a basic report of gathered data contained in aggregates.

---Statistics on time spent on each read---

time_on_read min:63us avg:71us max:26095us

total:717290330us count:10000000 variance:27123

value |-------------------------------------------------- count

8 | 0

16 | 0

32 | 116

64 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 9961146

128 | 3974

256 | 33517

512 | 25

1024 | 168

2048 | 82

4096 | 234
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8192 | 728

16384 | 10

32768 | 0

65536 | 0

Avg amount of reads per microsecond:0.01394

-----------------------------------------------------------------

---Statistics on time between each read performed---

intervals min:163us avg:179us max:76286us

total:1794140863us count:9999999 variance:77980

value |-------------------------------------------------- count

32 | 0

64 | 0

128 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 9923505

256 | 66053

512 | 7323

1024 | 338

2048 | 259

4096 | 640

8192 | 1856

16384 | 22

32768 | 1

65536 | 2

131072 | 0

262144 | 0

Avg amount of loops per microsecond:0.00557

Total script time (exec of loop): 1794142401us

The first thing we notice is that there are no errors, values of MPERF grow
constantly as expected. Besides that, these graphs show an average of 8̃0us and
1̃80us per readings and between readings, respectively. Approximating these
values to 100us, we find a reasonable value to use in our systemtap script
before encountering unexpected results. This value will also be the minimum
allowed in the bash script, where many other checks are made. As mentioned
in Section 3.4, we also know that the optimal point Pe of frequency and energy
consumption is updated by HWP every 1ms, so by staying below this threshold,
we hopefully get a more accurate view of MSRs’ variations.

The calling script and its parameters

Going back to the original script, that is record_msr.stp, the last thing to
observe is how it is executed during the automation phase 5.2.3.
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# shell code that calls systemtap

sudo taskset --cpu-list "$STAP_CPU" \

./record_msr.stp -c "$BENCHMARK" \

-o ./data/log/"$filename".log \

-s "$MAXFILESIZE" -D MAXMAPENTRIES="$MAXARRAYENTRY" \

--suppress-time-limits \

"$interval"

Among the used flags and parameters it is important to say that we needed
to suppress security checks done by systemtap’s compiler. These include both
time and space controls. In order to minimize work done during the tracing itself
we decided to print data to stdout at the end of the execution, thanks to the
flag -o $filename.log and the probe end statement, that are both explained
in Chapter 4.

5.2.2 rt-app workload

Our benchmark of choice was rt-app, a test application that starts multiple
periodic threads in order to simulate a real-time periodic load [12].

rt-app is a tool that can be used to emulate a use case. Not only the sleep
and run pattern can be emulated but also the dependency between tasks like
accessing same critical resources, creating sequential wake up or syncing the
wake up of threads. The use case is described in a json like file whose main
objects are:

• resources

• global

• tasks

Despite rt-app’s many available options through the configuration file, we
decided to go for a minimal setup, that certainly does not take advantage of the
most powerful core functionalities. This choice is due to the fact that a more
complex benchmark is not necessarily better in our context, indeed a simpler
one generates a more linear and clean log file, easier to study and understand.
That said, below the list of rt-app’s fundamentals we used:

“sleep” sleep time of a task in usec

“run” run time of a task in usec

“duration” total duration of the use case in sec

“calibration” the CPU used to calibrate the nsec per loop value

For a better understanding of rt-app it is strongly suggested taking a look
at its documentation [13], from which we took part of the content of this section.
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1 {

2 "tasks": {

3 "thread1": {

4 "instance": 1,

5 "loop": -1,

6 "run": 800000,

7 "sleep": 200000

8 }

9 },

10 "global": {

11 "duration": 30,

12 "calibration": "CPU0",

13 "default_policy": "SCHED_FIFO"

14 }

15 }

Figure 5.1: rt-app code

rt-app template of choice

Figure 5.1 shows a complete and working configuration file, that is the template
that is going to be the most widely in this study, where:

• one instance of a thread is spawned

• there is no predefined number of loops

• the run time is 0.8s

• the sleep time is 0.2s

• the total duration is 30s

• the calibration is done on CPU 0

• the chosen scheduler is SCHED_FIFO

Alternatives benchmark

Despite our first choice as a workload program was rt-app we did not want to
limit our analysis to that, so in the script 5.2.3 it is allowed to use any pro-
gram as the preferred benchmark. Since the tracing environment was designed
with rt-app in mind, support for this type of run is limited, in the sense that
fewer information are logged and general user-experience feels more diminished,
contrary to rt-app whose essential parameters are configurable.
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5.2.3 bash script

The bash script, named test_msr.sh, is the core that “glues” together all parts
of the tool chain, by providing a simple command line interface (cli) utility that
automates the benchmark and its tracing.

In addition to coordinating the tools, the script also does some security
checks to avoid errors that could lead to compromise the testing machine (e.g.
wrong CPU values, inconsistent/dangerous parameters, running identical bench-
mark, etc.).

A full list of flags and their values can be found by executing test_msr.sh -h:

Usage : test_msr.sh [-h] [-v] [-i n] [-l n] [-p n]

[-o] [-e n] [-w n] [-B s] [-b n] [-s n]

Options:

-h Display this message

-v Display script version

-i n Set us interval between MSR reads.

It must be greater then 100.

-l n Set a benchmark load percentage.

It must be between 1 and 100.

-p n Set the us period of the benchmark.

It must be between 1 and 10000000.

-o Online: launch Jupyter at the end.

-e n Energy performance preference (EPP):

between 0 max and 255 min.

VALUE STRING EPP

performance 0

balance-performance 128

normal, default 128

balance-power 192

power 255

-w n Activity-window: sliding window in us used by HWP to

maintain avg frequency. 0 means hardware-managed.

The value must be between 0 and 127 * 10^7.

Note: this value must be set together with -e n,

where n is not 0.

-B s Set custom benchmark, must be set without -l -p

-b n Set (valid) custom CPU for the benchmark.

-s s Set (valid) custom CPU for systemtap.

Defaults:

[i]nterval = 100

[l]oad = 80

[p]eriod = 1000000

[o]nline = not set

[e]PP = 128 - powersave
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[w]indow = 0 - hardware-managed

[s]tap_cpu = 0

[b]ench_cpu = 0

[B]ench_alt = not set

Dependencies:

bash

GNU coreutils

jq

systemtap

rt-app

msr-tools

[python]

[jupyter]

If everything is set-up correctly, it does the following:

1. makes a request to the HWP infrastructure 3.4

2. prints out a summary of how the set-up was configured

3. starts rt-app and systemtap with chosen values

4. eventually open jupyter notebook

5. reset system preferences of HWP (EPP and window) 3.3

All these steps are trivial since their simple scripting nature, also thanks to
the external tools that have been used (e.g. jq [3] is extremely useful when
dealing with json files). The only one that is less obvious and require some
additional manipulation besides simple variables tweaking is the first one, the
HWP request.

How to make HWP requests

Despite the useful tools provided by Intel for MSRs configuration(see Section 3.4.1
for details), direct interactions with these programs can be counter intuitive due
to how the HWP_REQUEST register needs to be written.

As discussed in Section 3.3, we have many configurable parameters for HWP,
provided by HWP_REQUEST, we repeate two of them here for convenience:

1. Energy Performance Preference (bits 31:24, RW)

2. Activity Window (bits 41:32, RW)

In this context we want to set this two fields, the window and the energy
performance preference (EPP). In order to do so we need to avoid overriding all
the register, so we need a ∨ between the current value of HWP_REQUEST and our
preferred configuration. This operation alone would not justify a whole another
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script, but the tricky part comes when dealing with the window: the first 3 bits
are used for the exponent, the last 7 for the desired value.

We also know from Chapter 3 that HWP_REQUEST is a core dependent MSR,
as opposed to HWP_REQUEST_REG_PKG, so we also need the CPU where we want
to perform this.

This “complexity” and the fact that this script has its own logic and use,
also outside of this study, has led us to make it an independent file.

1 #! /usr/bin/env bash

2

3 # support script that makes hwp_request through intel/msr-tools

4 # usage: hwp_request.sh CPU WIN EPP

5 #

6 # WIN:

7 # 10 bits:

8 # 10:7 -> 3 used for exp

9 # 6:0 -> 7 used for value

10 # max value is

11 # 111 1111111

12 # = 7 127

13 # = 127 * 10 ^ 7

14 #

15 # EPP:

16 # 8 bits: represents performance from max 0 to min 255

17

18 set -e

19

20 CPU=$1

21 HWP_REQUEST_REG=0x00000774

22

23 # properly parse activity window as understood from HWP

24 function parse_window {

25 win="$1"

26

27 for ((e = 0; ; e++)); do

28 [[ $win -le 127 ]] && break

29 win=$((win / 10))

30 done

31
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32 echo $(((e << 7) | win))

33 }

34

35 current_hwp=$2

36

37 # epp

38 if [[ -n $3 ]]; then

39 new_epp=$(printf '0x%x' "$3")

40 current_hwp=$((current_hwp & ~(new_win << 24)))

41 current_hwp=$((current_hwp | (new_epp << 24)))

42 fi

43

44 # activity window

45 if [[ -n $4 ]]; then

46 new_win=$(parse_window "$4")

47 current_hwp=$((current_hwp & ~(new_win << 32)))

48 current_hwp=$((current_hwp | (new_win << 32)))

49 fi

50

51 # make request

52 new_hwp=$(printf '0x%x\n' $current_hwp)

53 sudo wrmsr --processor "$CPU" "$HWP_REQUEST_REG" "$new_hwp"

5.2.4 Data analysis in Jupyter

Among the alternatives for data analysis our choice fell on python-jupyter for
two main reasons:

• the ease of use

• its interactive nature

The former point is easily explained by looking at the enormous support
that both projects got in recent times, these tools are well documented and get
constantly updated. The large number of packages available in python, together
with the power of jupyter, make it a simple, yet powerful, environment even for
users with little to no experience.

The latter is mostly due to jupyter notebooks, files produced by the jupyter
notebook app that contain code and rich text divided in cells, that can be run
independently from one to another. This makes it really convenient for our use
case, since it fits the “research” scope, where many trials and errors happen.
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In this section we will see the basics core functionalities that were used in
the analysis. Our description will be concise since, despite the seemingly length
of the notebook file, many parts are mechanics and therefore of less interest.
Note that all the “pure algorithmic” parts are postponed to Section 5.4, and
will be discussed “locally” to each case study, since they heavily depend on the
context.

Below the action performed to prepare the dataframe, starting from the log
file generated from systemtap 5.2.1:

1. store the content of the log file in a variable named data via pandas’s [9]
dataframes

2. fix the time field of the log, converting it to milliseconds, independently
from the sampling period of systemtap

3. derive values of APERF, MPERF, PPERF through the following snippet that
use numpy [7]:

1 mperf_der = np.diff(data.mperf)/np.diff(data.time)

2 aperf_der = np.diff(data.aperf)/np.diff(data.time)

3 pperf_der = np.diff(data.pperf)/np.diff(data.time)

All the other collected values (e.g. the temperature) are ready, since they
were not collected “raw” but already processed in a reasonable unit of measure
or simply because they did non need any alteration.

In order to dynamically compare multiple plots without re-executing our
code, we took advantage of another useful package from jupyter: ipywidgets.
With little scripting we were able to build a widget that updates live and offers
the possibility to:

• choose the graph view of the log, by selecting only some parts of the plot
(e.g. in period only one period is shown), executing live data manipulation
(e.g. in ratios MSRs values get divided), adding/removing traces (e.g. in
freq we add the CPU frequency)

• select a specific log file

• change the granularity of the log, that is the value of the rolling average
(this feature helps with the smoothness of the plot)

• change the path where to look for log files

Figure 5.2 shows the widgets with the above-listed options.
Once all values from the widget are set, these are passed to a function that

updates the plot, that is rendered with our library of choice: plotly. Built on
top of plotly.js, plotly.py is a high-level, declarative charting library [11].
Its simplicity allows to easily write interactive plots with few line of code, in
addition they can be zoomed, panned and exported in various formats, thus
completing our tool chain.
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Figure 5.2: Example ipywidgets

5.3 Testing machine setup

In order to give more context, in this section we are going to briefly see what is
the setup on the testing machine.

We used an Acer machine, whose Intel’s processor specs are fully available
at Intel’s site [2]. In Table 5.1 are shown software’s and hardware’s highlights.

software version
OS GNU/Linux (Arch)
Kernel 5.11.10-arch1-1
rt-app v1.0-137-g3a95bf5
systemtap 4.5/0.183

hardware version
CPU i5-6200U CPU @ 2.30GHz
max-freq 2800MHz
min-freq 400MHz
architecture x86 64

Table 5.1: Environment specifications

We decided to boot the machine in multi-user.target, that is a tty with-
out a graphical-user-interface (GUI). That choice is intended to lower the use
of resources outside of rt-app; since the GUI is considered one of the most
resource-heavy program, we cut off its interference with the goal of this project.

The processor is equipped with HWP and was set to the default turbo config-
uration, which was “on”. We checked these configurations with the commands
shown below.

# check turbo

grep flags /proc/cpuinfo | grep -q '\sida\s' && echo on || echo off

# check HWP

journalctl -b | grep -q pstate && echo on || echo off

Many other useful information about the processor can be found by seeing
Intel p-state settings: cat /sys/devices/system/cpu/intel_pstate/*.
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5.4 Experiments

The tool chain explained in Section 5.2 leads us to a “complete environment”
that can generate reproducible benchmarks (5.2.2), trace (5.2.1) MSRs (3) and
allow to analyze generated data (5.2.4).

After an empiric observation of plots, we noticed that there were common/re-
current patterns, so we decided to examine the most interesting ones.

All the patterns refer to a single “period”, that translates to the period
of rt-app. As mentioned earlier in Section 5.2.2, the benchmark is indeed
characterized by a run time and a sleep time, repeated for an amount of time
equal to global.duration; period means the union of both a single run and
sleep. Figure 5.1 describes the rt-app code used to simulate the workload and
shows a period of 1s = 1000000us = 800000run + 200000sleep.

Analyzing Figure 5.3 we detected several behaviors of the processor DVFS.
Below, we list the most relevant ones:

(A) APERF has a step-like growth

(B) MPERF drops in correspondence of APERF steps

(C) APERF is mostly higher than MPERF

(D) MPERF rises at idle

(E) temperature variations between idle/running cores

(F) APERF sporadically slows down during running phases

Due to the limited time, only (A), (B), (C) and (E) are investigated in
greater depth. Section 5.4.1 illustrates the phenomenon (A), Section 5.4.2 the
phenomenon (B), Section 5.4.3 the phenomenon (C), Section 5.4.4 the phe-
nomenon (E).

5.4.1 Steps of frequency growth

Looking closer at one period in the plots, the first thing we noticed was the
regular path of APERF growth during the ascent phase that follows sleep intervals
of all periods, e.g. the one shown in Figure 5.4.

If we add another trace to the plot, the frequency of the processor, that is

APERF DER×BASE FREQUENCY

MPERF DER
(5.1)

in each point, where BASE FREQUENCY is the base/regular frequency,
APERF DER and MPERF DER are the derivatives of APERF and MPERF

respectively, we can see in Figure 5.5 how the steps of APERF follow exactly the
steps of the frequency, as expected 3.3.

Right away APERF steps clearly seem a promising direction in the context
of DVFS, thus all experiments focus on various correlation of APERF and other
factors.
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Figure 5.3: Vertical alignment of three sample periods. Dashed squares are
zoomed on the right for better understanding. Lines of the same color identify
the same phenomenon.
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Figure 5.4: Regular, step-like, APERF tendency

Figure 5.5: Plot with frequency
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Figure 5.6: Drop example

Our approach to determine the pattern of frequency growth in presence of
the release of a new workload is as follows:

1. we determine the instants in time when the speed has changed and then

2. we compute the average frequency during each step.

Step detection algorithm

The first pass to make in order to analyze these steps is obviously to program-
matic extract them from the log file generated via systemtap 5.2.1. In that
phase we took a naive approach, to avoid over-complicating the algorithm. This
detection must not be overly accurate, as stated before, only for “false positive”,
that is steps that may or may not be in fact “real” steps, but should not miss
any actual step, or in other words should not produce “false negative”.

Before proceeding on the explanation of this phase it is important to note
why there may be “false positive”: our log files, and by reflection our plots,
contain a lot of “noise”, that is spikes in both Y axis direction; this is caused
by the very high frequency in which we read MSRs (see Section 5.2.1).

Going back to the algorithm, our goal is to locate and extract the time (the
X axis) where the rise begins in the plot (e.g. 5.4). We also need to find where
the plot of APERF “drops” (its usage will be clearer later), or in other words the
point just before the sleep begins.
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In order to achieve that detection we used a basic loop that find the delta,
that is the difference between each point i and the point found after length

values in the plot. Below a simplistic version of the python code responsible for
this; its real implementation does not go far away from what is shown here.

1 while i + length < len(aperf):

2 delta = aperf[i + length - 1] - aperf[i]

3

4 if delta > threshold_spikes:

5 spikes.append(i)

6 elif delta < threshold_drops:

7 drops.append(i)

8

9 if found:

10 i += length

11 else:

12 i += 1

13

14 return spikes, drops

length, threshold_drops and threshold_spikes are pretty much hard-
coded value, derived from an empiric observations of plots. The i_th point is
considered a step if the delta is sufficient, meaning it is big enough to be consid-
ered as such: it increase/decrease of an amount bigger than threshold_spikes

/threshold_drops, in a small interval of time, equals to length.

The need for a mean

By applying this algorithm, we encounter a problem that was already mentioned:
our data is too “noisy”. This reflects to an inflated number of steps/drops
detected. In order to mitigate that we decided to apply a rolling mean.

Our first choice was to “do it manually” together with the calculation of the
derivative, like shown below.

1 while i < len(data) - rolling_value - 1:

2 dx = data[i + rolling_value].time - data[i].time

3 aperf = data[i + rolling_value].aperf - data[i].aperf

4 aperf_der.append(aperf/dx)

5 i += 1

However, by doing that our code slowed down dramatically, due to the large
log file generated 5.2.1. That was solved by simply using numpy [7], a python
package used for scientific computing written in python and C.

1 data.aperf = np.diff(data.aperf)/np.diff(data.time)

2 data.aperf = data.rolling(rolling_value).mean()

By using that version of the mean, we reduced the run time of that section
from ∼5m40s to ∼50s on average.
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It is worth noting that this approach is not exactly the same as the previous
one: in fact it does not calculates the derivative together with the rolling mean,
but splits the process into sequential phases. Anyway, that did not seem to
produce any unexpected results, therefore our investigation on that topic ended
here.

Setup

Below rt-app’s configuration file with which the benchmark was started. Since
its parameters were not crucial in this experiment we decided to leave them as
the default one.

1 {

2 "tasks": {

3 "thread1": {

4 "instance": 1,

5 "loop": -1,

6 "run": 800000,

7 "sleep": 200000

8 }

9 },

10 "global": {

11 "duration": 30,

12 "calibration": "CPU0",

13 "default_policy": "SCHED_FIFO",

14 "gnuplot": false

15 }

16 }

To sum up:

• benchmark done in CPU: 0 , tracing done in CPU: 0

• traced each 100 us with a benchmark load of 80%

• the benchmark has run for 30s with a period of 1000000 us

• HWP request parameters: EPP = 128 , activity window = 0

Results

Figure 5.7 shows a zoom of the plot generated with data computed by the
algorithm that detect the steps of APERF.

Figure 5.8 shows the distribution of APERF steps, by plotting:

• on the x axis the length of each step, that is the time spent on that
particular step

• on the y axis the height of each step, that is the amplitude of the step,
representing the frequency increase/decrease
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Figure 5.7: Plot of collected steps, zoom of one period

Leaving aside the noisy steps on the highest and lowest part of the plot, the
figure clearly shows various patterns on both the height and time coordinates.
Among the many, the straight line is very noticeable. This line shows that the
steps are almost equidistant from a frequency point of view, meaning that they
probably differ by a multiple. Another observation is that the line is almost
exactly straight, which implies a fixed duration of the steps.

Figure 5.9 is taken from Intel and shows a similar result to Figure 5.7.

5.4.2 Frequency switch overhead

Figure 5.10 shows both the plots of APERF 5.5 and MPERF. We can observe that
whenever APERF changes to a different frequency value, MPERF is affected as
well. This behavior is explained by the necessary overhead to switch from a
clock frequency to another. In fact the CPU circuitry need some time to adapt
to the new running frequency. Processors cannot select any frequency between
the maximum and minimum frequency available, however they can choose a
different multiple (also mentioned in Section 5.4.1 and shown in Figure 5.8) of
the base clock and set to it through p-states, which are explained in Section 3.2.
The fact is that this change cannot happen live, and requires the processor
to be temporarily switch off and turned back on at a higher frequency, hence
the slowdown visible in Figure 5.10. Indeed MPERF grows at a constant rate
configured at boot time, so when it slows down it is due to the processor being
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Figure 5.8: Distribution plot of collected steps

Figure 5.9: Intel’s data on HWP
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Figure 5.10: Plot with MPERF

idle (see Section 3.3 for a better understanding of MPERF). This behavior is well
known, and among the many interesting aspects behind it, the overhead of this
operation stands out and is the focus of many papers about DVFS.

Setup

Since this experiment is essentially one prosecution of the one shown in Sec-
tion 5.4.1, its setup is left unchanged.

Results

Our research on that topic is unfortunately very superficial and limited. The
decision was to “manually” estimate an average overhead on the processor with
the following formula:

T ×
(

1− fdrop
fnom

)
(5.2)

where T is the sampling interval, fdrop is the frequency registered when the
switch is happening, fnom is the frequency right before (or after) the switch.
For a better understanding on those value, see Figure 5.11, that is the detail of
the first purple circle on figure’s zoom (B) 5.3.

We tested the overhead with a sampling interval T of 100us, and the average
was ∼14us. Another thing that we noticed in this calculations was that at higher
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Figure 5.11: Frequency overhead parameters illustrated on sample period.

fnom fdrop result
2.3955 2.05831 14.075976
2.39472 2.06796 13.645019
2.39456 2.06022 13.962482
2.39472 2.07801 13.225346

Table 5.2: Registered samples of nomimal and drop frequencies. Column result
shows the overhead in microseconds computed using formula 5.2.

frequencies the overhead was lesser. Table 5.2 shows data used for this test and
respective results.

5.4.3 Turbo always on

One of the recurrent patterns that stands out when looking at the three sample
period in Figure 5.3, is the fact that APERF, stays almost always above MPERF.
To be more precise, this happens approximately when rt-app starts and the
processor increases its speed (the steps progress explained in Section 5.4.1), but
does not happen when idling. Figure 5.12 shows the first sample period, which
clearly reaffirms what was said.

The processor stays at turbo no matter what the load is, and oddly enough,
also to what the duration of the benchmark is. The former statement can be
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Figure 5.12: APERF stays “high”

seen in Figure 5.13 and 5.14, where even a 10% 100% load respectively, did not
change this behavior, despite going idle for a short amount of time in Figure 5.14.
The latter has been tested with many long (up to ∼8hours) benchmarks that
were run without any idle phase.

Setup

When focusing on that experiment, our main focus was to understand if it
was possible to have ratio of APERF and MPERF a lower than 1, that means no
turbo. In order to do so we tried a lot of benchmarks, many of which are
almost equals to the ones shown previously. The only types of benchmarks
that are of interest to us are the one that do not use rt-app, as they are
not shown elsewhere. For the purpose aforementioned we wanted in fact to try
different kind of benchmarks, especially because this behavior seemed “strange”
at first, as naturally we did not expect that a processor could have run at turbo
frequencies for long periods. We took advantage of the flag -B of the bash

script 5.2.3, that gives the possibility to pass any ececutable to the script and
trace during it. For the long and intensive benchmarks we opted for sysbench,
since it provides a number of algorithms to generate random numbers that are
distributed according to a given probability distribution [34]. For example,
the longest benchmark that has been tested (the one that lasted 8hours), was
generated with the command shown below:
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Figure 5.13: Light benchmark

Figure 5.14: Intensive benchmark
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Figure 5.15: APERF
MPERF ratio

test_msr.sh -i 1000000 -B "sysbench --threads=10000 \

--cpu-max-prime=10000000 cpu run"

Results

By looking at the plot shown in Figure 5.15, that is ratio between APERF and
MPERF of Figure 5.12, we can see that it is approximately between 1.1 and 1.2.
This value tends to 1.1 when the benchmark is longer enough; this still means
that turbo is active, as discussed in Chapter 3.

Our conclusion about this pattern was simply that the tested processor 5.3
is capable of maintaining, although “low”, turbo frequencies for long period of
time without particular throttling.

5.4.4 Temperature variations

The temperature is a key element regarding power consumption and frequency
scaling, it is in fact one of the parameters involved when the CPU wants to make
a change in its speed. This is due to the fact that an abnormal high temperature
can potentially damage machine’s parts, so it is fundamental to refer to it when
trying to “go faster”.

Our experiment wants to study the consequences that an intensive task,
pinned on one CPU, cause on the whole package (all the CPUs).
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Setup

This experiment required tweaking both the systemtap’s and bash’s scripts.
Our goal is to have one main CPU, that run the benchmark and trace as ex-
plained in Section 5.2.1, while the others stay idle and trace only the tempera-
ture. All the CPUs need to exit when the benchmark ends.

We chose as the main the CPU 0 and made a basic synchronization mech-
anism. In order to achieve that, after storing the CPUs’ number in an array
called STAP_CPU, we do the following:

(A) start rt-app and systemtap on the main CPU (the first element in STAP_CPU),
as described in Section 5.2.1

(B) save its pid in the array ALL_PIDS

(C) stop the process

(D) for each other CPUs, start a “reduced” version of systemtap script, named
record_msr_multi.stp

(E) save all pids in ALL_PIDS

(F) stop all the processes immediately after their start

(G) after all processes have done this cycle (started and then stopped), resume
them together

(H) make the shell wait for all the processes to end

This complexity is needed because without any control, there is an higher
chance of “misalignment” between CPUs’ time and executions. The bash code
that does the synchronization mechanism is the following:

1 ALL_PIDS=()

2

3 # main process

4 sudo taskset --cpu-list "${STAP_CPU[0]}" \ # (A)

5 ./record_msr.stp -c "$BENCHMARK" \

6 -o ./data/log/multi/"$filename""${STAP_CPU[0]}".log \

7 -s "$MAXFILESIZE" -D MAXMAPENTRIES="$MAXARRAYENTRY" \

8 --suppress-time-limits \

9 "$interval" \

10 &

11

12 ALL_PIDS+=($!) # (B)

13

14 sudo kill -TSTP "${ALL_PIDS[0]}" # (C)
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15

16 for stap_cpu_curr in "${STAP_CPU[@]:1}"; do # (D)

17 sudo taskset --cpu-list "$stap_cpu_curr" \

18 ./record_msr_multi.stp \

19 -o ./data/log/multi/"$filename""$stap_cpu_curr".log \

20 -s "$MAXFILESIZE" -D MAXMAPENTRIES="$MAXARRAYENTRY" \

21 --suppress-time-limits \

22 "$interval" \

23 "${ALL_PIDS[0]}" \ # main process pid, arg £2 in systemtap

24 &

25

26 ALL_PIDS+=($!) # (E)

27

28 sudo kill -TSTP "$!" # (F)

29 done

30

31 sudo kill -CONT "${ALL_PIDS[@]}" # (G)

32

33 wait "${ALL_PIDS[@]}" # (H)

We also used a shortened version of the systemtap script, that trace only
the temperature and exit when our main process, the one run on CPU 0, ends.
The latter task is accomplished by passing an extra argument to the script, the
pid of the main process, and by adding the following snippet:

1 // exit when pid £2 ends

2 probe process($2).end {

3 exit()

4 }

Results

Figure 5.16 shows collected temperatures for the CPUs and the package, Fig-
ure 5.17 the derivative of APERF, traced on the core where rt-app started, that
is the CPU 0. Both figures are zoomed on three sample periods.

This experiment highlights the following points:

• the high-usage of one core has an impact on the others, as expected, since
heat transfers to nearby materials

• there is one sensor for physical core. It was clear indeed how data gath-
ered on CPU 0/CPU 2 and CPU 1/CPU 3 came from the same sensor,
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Figure 5.16: Temperature variations registered simultaneously on all cores
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Figure 5.17: APERF values traced on CPU 0

respectively. For this reason, Figure 5.16 reports only one CPU of each
pair

• the package sensor is the same sensor of CPU 0 (and CPU 2 for the
aforementioned point)
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